We define and investigate Frege systems for quantified Boolean formulas (QBF). For these new proof systems we develop a lower bound technique that directly lifts circuit lower bounds for a circuit class \mathcal{C} to the QBF Frege system operating with lines from \mathcal{C}. Such a direct transfer from circuit to proof complexity lower bounds has often been postulated for propositional systems, but had not been formally established in such generality for any proof systems prior to this work.

This leads to strong lower bounds for restricted versions of QBF Frege, in particular an exponential lower bound for QBF Frege systems operating with $\text{AC}^0[p]$ circuits. In contrast, any non-trivial lower bound for propositional $\text{AC}^0[p]$ Frege constitutes a major open problem.

Improving these lower bounds to unrestricted QBF Frege tightly corresponds to the major problems in circuit complexity and propositional proof complexity. In particular, proving a lower bound for QBF Frege systems operating with arbitrary P/poly circuits is equivalent to either showing a lower bound for P/poly or for propositional extended Frege (which operates with P/poly circuits).

We also compare our new QBF Frege systems to standard sequent calculi for QBF and establish a correspondence to intuitionistic bounded arithmetic.

CCS Concepts:
- Theory of computation → Proof complexity; Circuit complexity; Complexity theory and logic;

General Terms: proof complexity, bounded arithmetic, quantified boolean formulas

Additional Key Words and Phrases: QBF proof complexity, Frege systems, sequent calculus, intuitionistic logic, strategy extraction, lower bounds, simulations

ACM Reference Format:

1. INTRODUCTION

Proof complexity investigates how difficult it is to prove theorems in different formal systems. The main question asks, given a formula φ and a proof system P, typically comprised of axioms and rules, what is the size of the smallest proof of φ in P. This
question bears tight and fruitful relations to a number of further areas, in particular to computational complexity, where lower bounds to the size of proofs offer an approach towards the separation of complexity classes (Cook’s Programme), and to first-order logic (bounded arithmetic theories and their separations). More recently, the tremendous success of SAT solving has been a main driver for proof complexity, as the analysis of proof systems underlying SAT solvers provides the main theoretical framework towards understanding the power and limitations of solving, cf. the survey by Buss [2012].

The bulk of research in proof complexity has concentrated on proof systems for classical propositional logic. Regarding the central question above, propositional proof complexity has made enormous progress over the past three decades in showing tight lower and upper bounds for many principles in various proof systems. Arguably even more important, a number of general lower bound techniques have been developed that can be employed to show lower bounds to the size of proofs. These include the seminal size-width relationship by Ben-Sasson and Wigderson [2001], the feasible interpolation technique of Krajíček [1997], or game-theoretic techniques (cf. the overview in [Beyersdorff and Kullmann 2014]).

Notwithstanding these advances, some of the most natural proof systems have resisted all attempts for lower bounds for decades. Frege systems (also known as Hilbert-type systems) are the typical textbook calculi comprised of axiom schemes and rules, and no non-trivial lower bounds are known for Frege. While the power of Frege does not depend on the choice of axioms or rules [Cook and Reckhow 1979], their strength can be calibrated by restricting the class of allowed formulas.

In particular, a hierarchy of Frege systems can be obtained by considering Boolean circuits of increasing strength as lines in Frege. These circuit classes comprise the standard non-uniform classes: AC^0, which is the class of Boolean functions computed by families of polynomial-size constant-depth circuits with unbounded fan-in; $\mathsf{AC}^0[p]$, which is similar to AC^0 but allows mod-p gates; and TC^0, which additionally allows threshold gates. Even stronger, NC^1 comprises of the class of Boolean functions computed by families of polynomial-size logarithmic-depth circuits with bounded fan-in and P/poly of functions with polynomial-size circuits in general. For uniform families of circuits, one further imposes the condition that the circuit family can be generated efficiently. Here we typically consider non-uniform families, where we just require existence of the family of small circuits as above. This is analogous to the non-uniform model in proof complexity, where again only the existence of small proofs for a sequence of formulas is required. The circuit classes are ordered as $\mathsf{AC}^0 \subset \mathsf{AC}^0[p] \subset \mathsf{TC}^0 \subseteq \mathsf{NC}^1 \subseteq \mathsf{P}/\mathsf{poly}$, giving rise to a similar hierarchy of Frege systems.

While the strongest non-uniform lower bounds known in circuit complexity hold for the class $\mathsf{AC}^0[p]$ [Razborov 1987; Smolensky 1987], AC^0-Frege is the strongest of the above Frege systems with non-trivial lower bounds [Ajtai 1994; Krajíček et al. 1995; Pitassi et al. 1993]. Despite enormous efforts, all attempts to transfer Razborov’s and Smolensky’s $\mathsf{AC}^0[p]$ circuit lower to a proof size lower bound in $\mathsf{AC}^0[p]$-Frege have failed so far. More widely, it seems the common belief in the proof complexity community that substantial progress in circuit complexity would also give rise to major new lower bounds in proof complexity, for Frege (= NC^1-Frege) or even extended Frege ($\mathsf{EF} = \mathsf{P}/\mathsf{poly}$-Frege). Though this connection has been often postulated (cf. e.g. [Beame and Pitassi 2001]), it could never have been made formal so far.

In this paper we establish a technique to transfer circuit lower bounds to proof size lower bounds for proof systems for quantified Boolean formulas (QBF). Our technique lifts arbitrary circuit lower bounds to proof size bounds for QBF Frege systems, yielding
in particular exponential lower bounds for $\text{AC}^0[p]$-Frege for QBFs via [Razborov 1987; Smolensky 1987].

Before explaining our results in more detail, we discuss recent developments in QBF proof complexity.

QBF proof complexity is a relatively young field studying proof systems for quantified Boolean logic. Similarly as in the propositional case, one of the main motivations for the field comes via its intimate connection to solving. SAT and QBF solvers are powerful algorithms that efficiently solve the classically hard problems of SAT and QBF for large classes of practically relevant formulas, with modern solvers routinely solving industrial instances in millions of variables for various applications. Although QBF solving is at an earlier state, due to its PSPACE completeness, QBF even applies to further fields such as formal verification or planning [Benedetti and Mangassarian 2008; Egly et al. 2017; Rintanen 2007].

The connection to proof complexity comes from the fact that each successful run of a solver on an unsatisfiable instance can be interpreted as a proof of unsatisfiability; and modern SAT and QBF solvers (that are sound and complete) are known to correspond to the resolution proof system and its variants. In comparison to SAT, the picture is more complex in QBF as there exist two main solving approaches: utilising CDCL (conflict-driven clause learning) and expansion-based solving. To model the strength of these QBF solvers, a number of resolution-based QBF proof systems have been developed. Q-resolution (Q-Res) by Kleine Büning et al. [1995] forms the core of the CDCL-based systems. To capture further ideas from CDCL solving, Q-Res has been augmented to long-distance resolution by Balabanov and Jiang [2012], universal resolution QU-Res by Van Gelder [2012], and their combinations [Balabanov et al. 2014]. QBF resolution systems for expansion-based solving were developed by Janota and Marques-Silva [2015] and Beyersdorff et al. [2014]. Recent progress led to a complete understanding of the relative power of all these resolution-type QBF systems [Balabanov et al. 2014; Beyersdorff et al. 2015; Janota and Marques-Silva 2015].

From a proof complexity perspective, resolution is considered a weak system, witnessed by the wealth of resolution lower bounds (cf. [Segerlind 2007] for a survey); and the same classification applies to all of the QBF resolution calculi mentioned above, not only due to their reliance on the weak propositional resolution system, but also because of weak instantiations when dealing with quantifiers.

In addition to these weak QBF systems, there exist a number of very strong sequent calculi [Cook and Morioka 2005; Egly 2012; Krajíček and Pudlák 1990] as well as the general proof checking format QRAF [Heule et al. 2017].

However, compared to propositional proof complexity, a number of other approaches is yet missing in QBF. In particular, algebraic systems such as polynomial calculus [Clegg et al. 1996] or systems based on integer programming as cutting planes [Cook et al. 1987] have received great attention in recent years in propositional proof complexity. These systems are interesting as they are of intermediate strength: stronger than resolution, but weaker than Frege. No analogues of these systems had been considered in QBF prior to the conference paper [Beyersdorff et al. 2016] underlying this article; and even a QBF version of the propositional Frege hierarchy mentioned above has not been considered before. Building on our work here, the recent paper [Beyersdorff et al. 2018] investigates an analogue of the cutting planes proof system for QBF and [Beyersdorff et al. 2019] contains further work in this direction.

1.1. Summary of Results

Below we summarize our main contributions of this article, sketching the main results and techniques.
A. From propositional to QBF: new QBF proof systems. We exhibit a general method how to transform a propositional proof system to a QBF proof system. Our method is both conceptually simple and elegant. Starting from a propositional proof system \(P \) comprised of axioms and rules, we design a system \(P + \forall \text{red} \) for closed prenex QBFs (Definition 3.1). Throughout the proof, the quantifier prefix is fixed, and lines in the system \(P + \forall \text{red} \) are conceptually the same as lines in \(P \), i.e., clauses in resolution, circuits from \(\forall \text{-Frege} \) (where \(\forall \text{-Frege} \) is \(\text{AC}^0, \text{AC}^0[p], \text{TC}^0, \text{NC}^1 \text{ or P/poly} \), or inequalities in cutting planes. Our new system \(P + \forall \text{red} \) uses all the rules from \(P \), and can apply those on arbitrary lines, irrespective of whether the variables are existentially or universally quantified. To make the system complete, we introduce a \(\forall \text{red} \) rule that allows to replace universal variables by simple Herbrand functions, which can be represented as lines in \(P \). The link to Herbrand functions provides a clear semantic meaning for the \(\forall \text{red} \) rule, resulting in a natural and robust system \(P + \forall \text{red} \).

Our new systems \(P + \forall \text{red} \) are inspired by the approach taken in the definition of Q-Res [Kleine Büning et al. 1995]; and indeed when choosing resolution as the base system \(P \), our system \(P + \forall \text{red} \) coincides with the previously studied QU-Res [Van Gelder 2012]. While our definitions are quite general and yield for example previously missing QBF versions of polynomial calculus or cutting planes, we concentrate here on exploring the hierarchy \(\forall \text{-Frege} + \forall \text{red} \) of new QBF Frege systems.

B. From circuit to QBF lower bounds: a general technique. As mentioned above, it is a long-standing belief that circuit lower bounds correspond to proof size lower bounds, and clearly some of the strongest lower bounds in proof complexity as those for \(\text{AC}^0 \text{-Frege} \) are inspired by proof techniques in circuit complexity, cf. the survey of [Beame and Pitassi 2001]. Here we give a precise and formal account on how any circuit lower bound for \(\forall \text{-Frege} \) can be directly lifted to a proof size lower bound in \(\forall \text{-Frege} + \forall \text{red} \).

Conceptually, our lower bound method uses the idea of strategy extraction, an important paradigm in QBF (Theorem 4.3). Semantically, a QBF can be understood as a game between a universal and an existential player, where the universal player wins if and only if the QBF is false. Winning strategies for the universal player can be very complex. However, we show that from each refutation of a false QBF in a system \(\forall \text{-Frege} + \forall \text{red} \) we can efficiently extract a winning strategy for the universal player in a simple computational model we call \(\forall \text{-decision lists} \). We observe that \(\forall \text{-decision lists} \) are easy to transform into \(\forall \text{circuits} \) itself, with only a slight increase in complexity.

To obtain a proof-size lower bound we need a function \(f \) that is hard for \(\forall \text{-Frege} \). From \(f \) we construct a family \(\forall Q_f, n \) of false QBFs such that each winning strategy of the universal player on \(\forall Q_f, n \) has to compute \(f \). By strategy extraction, refutations of \(\forall Q_f, n \) in \(\forall \text{-Frege} + \forall \text{red} \) yield \(\forall \text{circuits} \) for \(f \); hence all such refutations must be long. In fact, we even show the converse implication to hold, i.e., from small \(\forall \text{circuits} \) for \(f \) we construct short proofs of \(\forall Q_f, n \) in \(\forall \text{-Frege} + \forall \text{red} \).

Our lower bound technique widely generalises ideas recently used by Beyersdorff et al. [2015] to show lower bounds for Q-Res and QU-Res for formulas originating from the \text{PARITY} function.

C. Lower bounds and separations: applying our framework. We apply our proof technique to a number of famous circuit lower bounds, thus obtaining lower bounds and separations for \(\forall \text{-Frege} + \forall \text{red} \) systems that are yet unparalleled in propositional proof complexity. The following results are contained in Section 5.

C.(i) Lower bounds and separations for the QBF proof system \(\text{AC}^0[p] \text{-Frege} + \forall \text{red} \). The seminal results of Razborov [1987] and Smolensky [1987] showed that \text{PARITY} and more generally \(\text{MOD}_{a} \) are the classic examples for functions that require exponential-size bounded-depth circuits with \(\text{MOD}_{p} \) gates, where \(p \) and \(q \) are different primes. Using
these functions, we define families of QBFs that require exponential-size proofs in $\text{AC}^0[p]$-$\text{Frege} + \text{Vred}$ by strategy extraction.

To obtain separations of these proof systems, the exact formulation of the QBFs matters. When defining the PARITY or MOD$_q$ formulas directly from (arbitrary) NC^1-circuits computing these functions, we obtain polynomial-size upper bounds in $\text{Frege} + \text{Vred}$. However, when carefully choosing specific and indeed very natural encodings, we can prove upper bounds for the MOD$_q$ formulas even in $\text{AC}^0[q]$-$\text{Frege} + \text{Vred}$, thus obtaining exponential separations of all the $\text{AC}^0[p]$-$\text{Frege} + \text{Vred}$ systems for distinct primes p.

As mentioned before, lower bounds for $\text{AC}^0[p]$-Frege (as well as their separations) are major open problems in propositional proof complexity.

C.(ii) Separating $\text{AC}^0[p]$-$\text{Frege} + \text{Vred}$ and TC^0-$\text{Frege} + \text{Vred}$. MAJORITY is another classic function in circuit complexity, for which exponential lower bounds are known for constant-depth circuits with MOD$_p$ gates for each prime p [Razborov 1987; Smolensky 1987]. Using our technique, we transfer these to lower bounds in $\text{AC}^0[p]$-$\text{Frege} + \text{Vred}$ for all primes p. Carefully choosing the QBF encoding of MAJORITY, we obtain polynomial upper bounds for the MAJORITY formulas in TC^0-$\text{Frege} + \text{Vred}$, thus proving an exponential separation between the two QBF proof systems $\text{AC}^0[p]$-$\text{Frege} + \text{Vred}$ and TC^0-$\text{Frege} + \text{Vred}$. Again, such a separation is wide open in propositional proof complexity.

C.(iii) CNFs separating the $\text{AC}^0[d]$-$\text{Frege} + \text{Vred}$ hierarchy. As a third example for our approach we investigate the fine structure of $\text{AC}^0[d]$-$\text{Frege} + \text{Vred}$, comprising all $\text{AC}^0[d]$-$\text{Frege} + \text{Vred}$ systems, where all formulas in proofs are required to have at most depth d for a fixed constant d. Resolution is an important example of such a system for depth $d = 1$. In circuit complexity the SIPSER_d functions from [Boppana and Sipser 1990] provide an exponential separation of depth-$(d - 1)$ from depth-d circuits [Håstad 1986]. With our technique, this separation translates into a separation of AC^0_{d-3}-$\text{Frege} + \text{Vred}$ from AC^0_d-$\text{Frege} + \text{Vred}$, where the increased gap of size 3 comes from our transformation of \$\forall\$-decision lists into \$\forall\$-circuits.

The SIPSER_d formulas achieving these separations are prenexed CNFs, i.e., the formulas each have a matrix of depth 2. While in propositional proof complexity the hierarchy of $\text{AC}^0[d]$-Frege systems is exponentially separated [Ajtai 1994; Krajíček et al. 1995; Pitassi et al. 1993], such a separation by formulas of depth independent of d is a major open problem.

C.(iv) Characterising lower bounds for QBF Frege. The main question left open by the results described above is whether unconditional lower bounds can be obtained for $\text{Frege} + \text{Vred}$ or even $\text{EF} + \text{Vred}$. We show that such a result would imply either a major breakthrough in circuit complexity (a lower bound for non-uniform NC1 or even P/poly) or a major breakthrough in propositional proof complexity (lower bounds for classical Frege or even EF); and in fact the opposite implications hold as well (Theorem 5.13).

This means that the problem of lower bounds for QBF Frege very naturally unites the central problem in circuit complexity with the central problem in proof complexity. Conceptually this is very interesting: the direct connection between progress in circuit complexity and proof complexity, which has often been postulated (cf. [Beame and Pitassi 2001]), directly manifests in $\text{Frege} + \text{Vred}$, thus highlighting that $\text{Frege} + \text{Vred}$ is indeed a natural and important system.

1. Although CNF formulas have depth 2, it is customary to consider Resolution being of depth $d = 1$ as it handles CNF formulas as sets of clauses, i.e. sets of objects of depth $d = 1$.

Technically, this result uses a normal form that we achieve for $\text{Frege} + \forall \text{red}$ proofs: these can be decomposed into a classical Frege proof followed by a number of $\forall \text{red}$ steps (Theorem 4.5). We further show that even $\forall \text{red}$ steps suffice that only substitute constants (Theorem 4.7).

D. Gentzen vs. Frege in QBF: simulations and separations. In classical proof complexity Frege and Gentzen’s sequent system LK are p-equivalent, i.e., proofs can be efficiently translated between the systems [Cook and Reckhow 1979]. In contrast, our findings show a more complex picture for QBF, induced by the weak methods for handling (universal) quantifiers. We concentrate on the most important standard Gentzen-style systems G_0 and G_1 of Cook and Morioka [2005] as well as the QBF Frege systems $\text{Frege} + \forall \text{red}$ and $\text{EF} + \forall \text{red}$. The indices in G_0 and G_1 refer to the quantifiers complexity of formulas allowed in cuts, cf. Section 6.1.1.

For these four systems the following picture emerges (cf. Figure 1): We prove that tree-like G_1 p-simulates $\text{EF} + \forall \text{red}$ (Theorem 6.4) and tree-like G_0 simulates $\text{Frege} + \forall \text{red}$ under a relaxed notion of p-simulation (Theorem 6.6). On the other hand, the converse simulations are unlikely to hold. Under standard complexity-theoretic assumptions we show that $\text{EF} + \forall \text{red}$ is strictly weaker than tree-like G_1 (Theorems 6.8, 6.10). Moreover, $\text{EF} + \forall \text{red}$ is incomparable to both tree-like G_0 and G_0 (Theorems 6.11, 6.7). Hence, unlike in the propositional framework, Gentzen appears to be stronger than Frege in QBF.

While all these separations make use of complexity-theoretic assumptions, it will be hard to improve these results to unconditional lower bounds (see C.(iv) above). However, since we use a number of different and indeed partly incomparable assumptions, our separations seem very plausible.

E. QBF Frege corresponds to intuitionistic logic. The strongest tool for an understanding of classical Frege as well as propositional and QBF Gentzen systems comes from their correspondence to bounded arithmetic [Cook and Nguyen 2010; Krajíček 1995]. Here we show such a correspondence between $\text{EF} + \forall \text{red}$ and first-order intuitionistic logic IS^1_2, introduced in [Buss 1986b; Cook and Urquhart 1993]. For this first-order arithmetic formulas are translated into sequences of QBFs [Krajíček and Pudlák 1990].

Our main result on the correspondence states that translations of arbitrarily complex prenex theorems in IS^1_2 admit polynomial-size $\text{EF} + \forall \text{red}$ proofs (Theorem 6.1). Informally, this says that all IS^1_2 consequences can be efficiently derived in $\text{EF} + \forall \text{red}$, and moreover, $\text{EF} + \forall \text{red}$ is the weakest system with this property.

The second facet of the correspondence is that IS^1_2 can prove the correctness of $\text{EF} + \forall \text{red}$ in a suitable encoding (Corollary 6.3), and in a certain sense $\text{EF} + \forall \text{red}$ is the strongest proof system that is provably sound in the theory IS^1_2.

Technically, the correspondence as well as the simulation results mentioned under D. above rest on a formalisation of the Strategy Extraction Theorem for QBF Frege systems. We provide two formalisations for this result: in the first we directly construct Frege proofs for the correctness of the witnessing properties (Theorem 4.4). In the second we use first-order logic, where we formalise strategy extraction in the theory S^2_1 (Theorem 6.2). While the first formalisation applies to more systems and gives the simulation structure detailed in D., the second formalisation is stronger and enables the correspondence to IS^2_1.

Although intuitionistic bounded arithmetic was already developed by Buss [1986b] in the mid 80s, no QBF counterpart of this theory was found so far—in sharp contrast to most other arithmetic theories [Cook and Nguyen 2010]. As we show here, the missing piece in the puzzle is our new QBF Frege system $EF + \forall\text{red}$.

Indeed, the appealing link between IS^2_1 and $EF + \forall\text{red}$ comes via their witnessing properties: similarly as $EF + \forall\text{red}$ has strategy extraction for arbitrarily complex QBFs, the theory IS^2_1 admits a witnessing theorem for arbitrary first-order formulas [Cook and Urquhart 1993].

Conceptually, our work draws on the close interplay of ideas and techniques from proof complexity, computational complexity, and bounded arithmetic; and it is really the interaction of these areas and techniques that form the technical basis of our results (which enforces us also to include rather extensive preliminaries).

1.2. Relations to previous work

In addition to the developments in propositional and QBF proof complexity sketched in the beginning, the main precursor of our work is the paper [Beyersdorff, Chew, and Janota 2015]. Strategy extraction for Q-Res and QU-Res was shown by Gouliaeva et al. [2011] and Balabanov and Jiang [2012], but the idea to turn this into a lower bound argument for the proof size originates from [Beyersdorff et al. 2015], where the AC^0 lower bound for PARITY is used to obtain exponential lower bounds for Q-Res and QU-Res. However, the treatment in [Beyersdorff et al. 2015] is solely confined to the resolution case. Here we widely generalise these concepts and uncover the full potential of that approach. In fact, quite weak circuit lower bounds would suffice for the proof-size lower bounds of [Beyersdorff et al. 2015], cf. Corollary 5.11 in the present paper; and from [Beyersdorff et al. 2015] it is not clear how the full spectrum of the state-of-the-art circuit lower bounds could be used to get proof size lower bounds.

Feasible interpolation is another technique relating circuit lower bounds to proof size bounds. Feasible interpolation has been successfully applied to show lower bounds for a number of propositional proof systems, including resolution [Krajíček 1997] and cutting planes [Pudlák 1997]. Indeed, Beyersdorff et al. [2017] have recently shown that feasible interpolation is also effective for QBF resolution calculi. Interpolation transfers monotone circuit lower bounds to proof size lower bounds. Hence, different from strategy extraction, there is no connection between the circuit model and the lines in the proof system. Also, by results of [Bonet et al. 2004, 2000; Krajíček and Pudlák 1998] feasible interpolation is not applicable to strong systems such as AC^0-Frege and beyond. Another restriction of interpolation is that it only applies to special formulas, and for these—at least in the case of QBF resolution systems—it can be understood as a special case of strategy extraction [Beyersdorff et al. 2017].

1.3. Organization of the paper

Contents

1 Introduction

1.1 Summary of Results ... 3
1.2 Relations to previous work 7
1.3 Organization of the paper 7

2 Preliminaries .. 8
 2.1 Circuit classes .. 8
 2.2 Proof systems .. 8
 2.3 Frege systems ... 9
 2.4 Quantified Boolean Formulas 10

3 Defining QBF Frege systems 10

4 Strategy extraction .. 12
 4.1 Formalized Strategy Extraction 14
 4.2 Normal forms for \forall-Frege $+ \forall$red proofs 16

5 Separations and lower bounds via circuit complexity 17
 5.1 Lower bounds for bounded-depth QBF Frege systems 19
 5.2 Lower bounds for constant depth QBF Frege systems 22
 5.3 Characterizing QBF Frege and extended Frege lower bounds 24

6 Relation of QBF Frege to sequent systems and bounded arithmetic 25
 6.1 Background on sequent systems and bounded arithmetic 25
 6.1.1 Sequent Calculi 25
 6.1.2 Bounded arithmetic 26
 6.2 Intuitionistic logic corresponds to extended Frege for QBFs 27
 6.3 Gentzen and Frege for QBFs 29
 6.3.1 Formulas hard in Gentzen, but easy in Frege 31
 6.3.2 Formulas easy in Gentzen, but hard in Frege 32

7 Conclusion ... 34

2. PRELIMINARIES
We assume familiarity with basic notions from computational complexity, cf. [Arora and Barak 2009], as well as from logic, cf. [Krajíček 1995], but define all specific concepts needed in this paper. For a formula φ we denote by $\varphi[x_1/\theta_1, \ldots, x_k/\theta_k]$ the formula φ where variables x_i have been substituted by formulas θ_i.

2.1 Circuit classes
We recall the definitions of standard circuit classes used in this paper. The class AC^0 contains all languages recognizable by polynomial-size circuits over the Boolean basis \neg, \lor, \land with bounded depth and unbounded fan-in. When fixing the depth to a constant d, we denote the circuit class by AC^0_d. The class $\text{AC}^0[p]$ uses bounded-depth circuits with MOD_p gates determining whether the sum of the inputs is 0 modulo p, and in TC^0 bounded-depth circuits with threshold gates are permitted. Stronger classes are obtained by using NC^1 circuits of polynomial size and logarithmic depth, and by P/poly circuits of polynomial size.

When defining circuit families C_n from a circuit class C, we distinguish between uniform and non-uniform families. For a uniform family, we require that there exists a Turing machine, which from input 1^n efficiently constructs the circuit C_n. In the non-uniform setting, we merely require that the circuit $C_n \in C$ exists and is of the required size.
For an in-depth account on circuit complexity we refer to [Vollmer 1999].

2.2. Proof systems
According to Cook and Reckhow [1979] a proof system for a language \mathcal{L} is a polynomial-time function $P : \{0,1\}^* \rightarrow \mathcal{L}$. Each string $\varphi \in \mathcal{L}$ is a theorem and if $P(\pi) = \varphi$, π is a proof of φ in P. Given a polynomial-time function $P : \{0,1\}^* \rightarrow \{0,1\}^*$ the fact that $P(\{0,1\}^*) \subseteq \mathcal{L}$ is the soundness property for \mathcal{L} and the fact that $P(\{0,1\}^*) \supseteq \mathcal{L}$ is the completeness property for \mathcal{L}. Proof systems for the language TAUT of propositional tautologies are called propositional proof systems and proof systems for the language TQBF of true QBF formulas are called QBF proof systems. Equivalently, propositional proof systems and QBF proof systems can be defined respectively for the languages UNSAT of unsatisfiable propositional formulas and FQBF of false QBF formulas, in this second case we call them refutational. Given two proof systems P and Q for the same language \mathcal{L}, P p-simulates Q (denoted $Q \leq_p P$) if there exists a polynomial-time function t such that for each $\pi \in \{0,1\}^*$, $P(t(\pi)) = Q(\pi)$. Two systems are called p-equivalent if they p-simulate each other. A proof system P for \mathcal{L} is called polynomially bounded if there exists a polynomial p such that every $x \in \mathcal{L}$ has a P-proof of size at most $p(|x|)$, where $|x|$ is the size of string x.

2.3. Frege systems
Frege proof systems are the common ‘textbook’ proof systems for propositional logic based on axioms and rules [Cook and Reckhow 1979]. The lines in a Frege proof are propositional formulas built from propositional variables x, and Boolean connectives \neg, \land, and \lor. A Frege system comprises a finite set of axiom schemes and rules, e.g., $\varphi \lor \neg\varphi$ is a possible axiom scheme. A Frege proof is a sequence of formulas where each formula is either a substitution instance of an axiom, or can be inferred from previous formulas by a valid inference rule. Frege systems are required to be sound and implicationally complete. The exact choice of the axiom schemes and rules does not matter as any two Frege systems are p-equivalent, even when changing the basis of Boolean connectives [Cook and Reckhow 1979] and [Krajíček 1995, Theorem 4.4.13]. Therefore we can assume w.l.o.g. that modus ponens is the only rule of inference. Usually Frege systems are defined as proof systems where the last formula is the proven formula. To include also weak systems as resolution in this picture we use here the equivalent setting of refutation Frege systems where we start with the negation of the formula that we want to prove and derive the contradiction 0.

Given a circuit class \mathcal{C}, a general definition of \mathcal{C}-Frege is contained in [Jeřábek 2005]. Below we explicitly present the definitions of \mathcal{C}-Frege for the circuit classes we will need later. There are several common restrictions that can be imposed on Frege; for example bounded-depth Frege systems (or \mathcal{AC}^0-Frege) are Frege systems where lines are formulas with negations only on variables and with a bounded number of alternations between \land’s and \lor’s. If the number of alternations is at most d, then the proof system is called \mathcal{AC}^0_d-Frege. Bounded-depth Frege is called \mathcal{AC}^0-Frege since lines in an \mathcal{AC}^0-Frege proof are representable as \mathcal{AC}^0-circuits.

Resolution (Res) is a particular kind of \mathcal{AC}^0-Frege system2 introduced by [Blake 1937] and [Robinson 1965]. It is a refutational proof system manipulating unsatisfiable CNFs as sets of clauses, where clauses are sets of literals. As we treat clauses as sets, factoring (to contract multiple occurrences of the same literal) is done automatically. The only inference rule of Resolution is

2We will consistently treat \mathcal{C}-Frege systems as operating with lines from \mathcal{C}. As Res operates with clauses we will call it a \mathcal{AC}^0_1-Frege system even though it refutes CNFs, which are depth 2.
\[
\frac{C \lor x}{C} \quad \frac{D \lor \neg x}{C \lor D} \quad \text{(Res rule)},
\]
where \(C, D\) denote clauses and \(x\) is a variable. A Res refutation derives the empty clause.

Given a prime \(p\), the \(AC^0[p]\)-Frege systems are defined to be bounded-depth Frege systems in the language with Boolean connectives \(\neg, \lor, \land\) and modular gates \(MOD_p(x_1, \ldots, x_n)\). The \(MOD_p\) predicate is true when \(\sum_i x_i \equiv 0 \pmod{p}\).

The \(TC^0\)-Frege systems are defined to be bounded-depth Frege systems in the language with Boolean connectives \(\neg, \lor, \land\) and threshold gates \(T_k(x_1, \ldots, x_n)\). The \(T_k\) predicate is true when at least \(k\) of its inputs are true. Two different, but equivalent, formalizations of \(TC^0\)-Frege proof systems are given by [Buss and Clote 1996] and [Bonet et al. 2000].

(Unrestricted) Frege systems correspond to the complexity class \(NC^1\) in the same sense as bounded-depth Frege corresponds to the class \(AC^0\). We will refer sometimes to Frege as \(NC^1\)-Frege.

Extended Frege systems EF allow the introduction of new extension variables that abbreviate formulas. Consistent with the above treatment of \(\forall\)-Frege, we define EF here as a Frege system that directly operates with Boolean circuits rather than formulas, where extension variables can be used to define the circuit gates (see [Jeřábek 2005] for the precise formulation). Therefore we will refer to EF also as \(P/poly\)-Frege. An alternative characterization of EF is through substitution Frege systems SF that allow arbitrary substitution instances of derived formulas [Cook and Reckhow 1979; Krajíček and Pudlák 1989].

The Frege systems defined above form a hierarchy of proof systems

\[
\text{Res} \leq_p AC^0\text{-Frege} \leq_p AC^0[p]\text{-Frege} \leq_p TC^0\text{-Frege} \leq_p \text{Frege} \leq_p \text{EF}.
\]

Currently lower bounds are only known for \(\text{Res} [Haken 1985]\) and \(AC^0\)-Frege [Ajtai 1994; Krajíček et al. 1995; Pitassi et al. 1993], whereas super-polynomial lower bounds for any of the stronger systems constitute major problems in proof complexity.

2.4. Quantified Boolean Formulas

A (closed prenex) Quantified Boolean Formula (QBF) is a formula where quantifiers are introduced to propositional logic, which has constants 0, 1, the usual operators \(\neg, \land, \lor, \rightarrow, \leftrightarrow\), and propositional variables. Each variable is quantified at the beginning of the formula, using either an existential or universal quantifier. We denote such formulas as \(Q \phi\), where \(\phi\) is a propositional formula called matrix, and \(Q\) is its quantifier prefix. We typically use \(x_i\) for existentially quantified variables and \(u_i\) for universally quantified variables. Sometimes we require the matrix to be a Conjunctive Normal Form (CNF), in particular when we implement Resolution-style systems.

In a fully quantified prenex QBF, the quantifier prefix determines a total order of the variables. Given a variable \(y\), we will sometimes refer to the variables preceding \(y\) in the prefix as variables left of \(y\); analogously we speak of the variables right of \(y\).

The quantifier complexity of QBFs is captured by sets \(\Sigma^i_q\) and \(\Pi^i_q\), which are defined inductively: \(\Sigma^0_q = \Pi^0_q = \text{set of quantifier-free propositional formulas}, \) \(\Sigma^i_q\) is the closure of \(\Pi^i_q\) under existential quantification, and \(\Pi^i_q\) is the closure of \(\Sigma^i_q\) under universal quantifiers.

A QBF \(Q_1(x_1) \cdots Q_k(x_k) \phi\) can be seen as a game between two players: universal (\(\forall\)) and existential (\(\exists\)). In the \(i\)-th step of the game, the player \(Q_i\) assigns a value to the variable \(x_i\). The existential player wins if \(\phi\) evaluates to 1 under the assignment constructed in the game. The universal player wins if \(\phi\) evaluates to 0. Given a universal variable \(u\) with index \(i\), a strategy for \(u\) is a function from all variables of index \(< i\) to \(\{0, 1\}\).
A QBF is false if and only if there exists a winning strategy for the universal player, that is if the universal player has a strategy for all universal variables that wins any possible game [Arora and Barak 2009; Goultiaeva et al. 2011].

3. DEFINING QBF FREGE SYSTEMS

In this section we provide a general method of transforming a propositional proof system into a QBF proof system. While this method works for a wide range of proof systems operating with lines and rules, we will concentrate here on the hierarchy of \mathcal{C}-Frege systems introduced in the previous section. However, our method also works for further propositional proof systems such as polynomial calculus [Clegg et al. 1996] or cutting planes [Beyersdorff et al. 2018; Cook et al. 1987].

For the following we fix a circuit class \mathcal{C} with some natural properties, e.g., closure under restrictions. In particular, \mathcal{C} can be any of the circuit classes mentioned in Section 2.

Definition 3.1 (\mathcal{C}-Frege $+ \forall$red). A refutation of a false QBF $Q\varphi$ in the system \mathcal{C}-Frege $+ \forall$red is a sequence of lines L_1, \ldots, L_ℓ where each line is a circuit from the class \mathcal{C}, $L_1 = \varphi,$ $L_\ell = 0$ and each L_i is inferred from previous lines L_j using the following rule

$$\frac{L_j}{L_j[u/B]} (\forall\text{red}),$$

where $L_j[u/B]$ belongs to the class \mathcal{C}, variable u is rightmost (innermost with respect to the prefix) among the variables of L_j, and B is a circuit from the class \mathcal{C} containing only variables left of u.

The formal justification why \mathcal{C}-Frege $+ \forall$red is a sound and complete QBF proof system is given in Theorem 3.2 below. However, let us pause a moment to see why adding the \forallred rule results in a natural proof system \mathcal{C}-Frege $+ \forall$red. Recall that we consider \mathcal{C}-Frege $+ \forall$red as a refutation system; hence we aim to refute false quantified \mathcal{C}-formulas. A standard approach to witness the falsity of quantified formulas is through Herbrand functions, which replace a universal variable u by a function in the existential variables left of u. These functions can be viewed as 'counterexample functions'. In Definition 3.1, B plays the role of the Herbrand function. Clearly, when restricting formulas to a class \mathcal{C} we should also restrict B to that class, and substituting the Herbrand function into the formula should again preserve \mathcal{C}.

Note that we are even allowed to choose different Herbrand functions B for the same variable u in different parts of the proof. In general, this will be unsound (unless variables right of u are renamed). However, it is safe to do if the line L_j does not contain any variables right of u.

It is illustrative to see how our construction compares to previously studied QBF resolution systems. Choosing Res as our propositional proof system, which is an AC_1^0-Frege system, we obtain $\text{Res} + \forall$red. In $\text{Res} + \forall$red the \forallred rule can substitute a universal u by either a disjunction of literals or by a constant 0/1. In the former case, we simply obtain a weakening step. In the latter case, if u appears positively in the clause then substituting u by 0 precisely corresponds to an application of the \forallred rule in Q-Res,

3In the context of a circuit class, "closure under restriction" means that for any circuit in the class, if we pick a partial assignment to some of the input variables and substitute in those constants, we still are guaranteed to be in the same circuit class.

4In the case where \mathcal{C} is AC_1^0 we require that $\varphi = L_1 \land \cdots \land L_m$ where L_j are lines in AC_1^0-Frege.
whereas substituting \(u \) by 1 results in a useless tautology.\(^5\) As \(\text{Res} + \forall \text{red} \) can resolve on existential and universal variables, our system \(\text{Res} + \forall \text{red} \) is exactly the well-known QU-Res (with weakening).

We now proceed to show soundness and completeness of the new QBF systems.

Theorem 3.2. For every circuit complexity class \(\mathcal{C} \), the system \(\mathcal{C} \)-Frege + \(\forall \text{red} \) is a refutational QBF proof system.

Proof. \(\text{Res} + \forall \text{red} \) is complete as it p-simulates \(\text{Q-Res} \), which is complete for QBF [Kleine Bünning et al. 1995]. To obtain the completeness for \(\mathcal{C} \)-Frege + \(\forall \text{red} \) we first use de Morgan’s rules to expand the formula into a CNF. This is possible as, by definition, \(\mathcal{C} \)-Frege is implicationally complete. Now we can refute the CNF by \(\text{Res} + \forall \text{red} \). \(\mathcal{C} \)-Frege + \(\forall \text{red} \) p-simulates \(\text{Res} + \forall \text{red} \) and hence \(\mathcal{C} \)-Frege + \(\forall \text{red} \) is complete.

Regarding the soundness of \(\mathcal{C} \)-Frege + \(\forall \text{red} \), let \((L_1, \ldots, L_l) \) be a refutation of \(\varphi \) in the system \(\mathcal{C} \)-Frege + \(\forall \text{red} \) and let

\[
\varphi_i = \begin{cases} \varphi & \text{if } i = 0, \\ \varphi \land L_1 \land \cdots \land L_i & \text{otherwise}. \end{cases}
\]

By induction on \(i \) we prove that \(\varphi \) semantically entails \(\varphi_i \), i.e., \(\varphi \models \varphi_i \). Hence, at step \(i = \ell \) we will immediately obtain that \(\varphi \) is false, since \(L_\ell = 0 \) and \(\varphi_\ell = 0 \).

Since \(\varphi = \varphi_0 \) the base case of the induction holds.

We show now that \(\varphi \models \varphi_i \) implies \(\varphi \models \varphi_{i+1} \). By definition, \(\varphi_{i+1} = (\varphi_i \land L_{i+1}) \) and \(L_{i+1} \) was either introduced by a \(\mathcal{C} \)-Frege rule or by the \(\forall \text{red} \) rule. If \(L_{i+1} \) was introduced by a \(\mathcal{C} \)-Frege rule then \(\varphi_i \models L_{i+1} \), so \(\varphi_i \models \varphi_{i+1} \) and clearly \(\forall \varphi \models \forall \varphi_i \models \forall \varphi_{i+1} \).

Suppose now that \(L_{i+1} \) was introduced by the \(\forall \text{red} \) rule, say \(L_{i+1} = L_j[u/B] \) with \(j \leq i \), \(u \) the innermost variable among the ones in \(L_j \) and \(B \) relying only on the variables left of \(u \). Moreover suppose that \(\varphi_i = Q_1 x \forall u Q_2 y \varphi_i \), then we have the following chain of equivalences

\[
\begin{align*}
Q \varphi_i & = Q_1 x \forall u Q_2 y \varphi_i & (1) \\
& \equiv Q_1 x \forall u Q_2 y \varphi_i \land L_j & (2) \\
& \equiv Q_1 x \left((Q_2 y \varphi_i[u/0] \land L_j[u/0]) \land (Q_2 y \varphi_i[u/1] \land L_j[u/1]) \right) & (3) \\
& \equiv Q_1 x \left(L_j[u/0] \land L_j[u/1] \land (Q_2 y \varphi_i[u/0]) \land (Q_2 y \varphi_i[u/1]) \right) & (4) \\
& \equiv Q_1 x \left(L_j[u/0] \land L_j[u/1] \land \forall u Q_2 y \varphi_i \right) & (5) \\
& \equiv Q_1 x \left(L_j[u/0] \land L_j[u/1] \land \forall u Q_2 y \varphi_i \land L_j[u/B] \land \forall u Q_2 y \varphi_i \right) & (6) \\
& \equiv Q_1 x \forall u Q_2 y \varphi_i \land L_j[u/0] \land L_j[u/1] \land L_j[u/B]. & (7)
\end{align*}
\]

In (3) and (5) we used the definition of semantic expansion of a universal variable in a QBF; in (4), (6) and (7) we used the fact that \(L_j[u/0] \), \(L_j[u/1] \) and \(L_j[u/B] \) do not contain \(y \) variables. From (7) follows, by weakening, that

\[
\varphi_i \models Q_1 x \forall u Q_2 y \varphi_i \land L_j[u/B],
\]

hence \(\varphi \models \varphi_{i+1}. \) \(\square \)

Clearly lower bounds on the complexity of \(\mathcal{C} \)-Frege + \(\forall \text{red} \) follow from lower bounds on \(\mathcal{C} \)-Frege. The lower bounds we show later will be of a different kind as they will be

\(^5\)Note that, contrasting the usual setting of \(\text{Q-Res} \) [Kleine Bünning et al. 1995], our definition of \(\text{Res} + \forall \text{red} \) does not need to disallow tautologous resolvents as these will always be reduced to 1.

'purely for QBF proof systems' in the sense that they will lower bound the number of
occurrences of the \(\forall \text{red} \) rule in refutations (cf. also [Beyersdorff et al. 2017] for a formal
definition of what qualifies as a 'genuine' QBF lower bound).

4. STRATEGY EXTRACTION

We introduce now the simple computational model of \(\mathcal{C} \)-decision lists.

Definition 4.1 (\(\mathcal{C} \)-decision list). A \(\mathcal{C} \)-decision list is a programme of the following form

\[
\text{if } C_1(x) \text{ then } u \leftarrow B_1(x); \\
\text{else if } C_2(x) \text{ then } u \leftarrow B_2(x); \\
\vdots \\
\text{else if } C_{t-1}(x) \text{ then } u \leftarrow B_{t-1}(x); \\
\text{else } u \leftarrow B_t(x),
\]

where \(C_1, \ldots, C_{t-1} \) and \(B_1, \ldots, B_t \) are circuits in the class \(\mathcal{C} \). Hence a decision list as above computes a Boolean function \(u = g(x) \).

This definition generalises decision lists from [Rivest 1987], where the conditions \(C_i(x) \) are expressible as terms. We note that for many cases \(\mathcal{C} \)-decision lists can be easily transformed into \(\mathcal{C} \)-circuits.

Proposition 4.2. Let \(D \) be a \(\mathcal{C} \)-decision list using circuits \(C_1, \ldots, C_{t-1} \) and \(B_1, \ldots, B_t \), such that \(D \) computes the Boolean function \(g \). Then there exists a circuit \(D' \in \mathcal{C} \) computing the same function \(g \), such that the size of \(D' \) is linear in the size of \(D \) and

\[
\text{depth}(D') \leq \max \left\{ \max_{1 \leq i \leq t-1} \{\text{depth}(C_i)\}, \max_{1 \leq i \leq t} \{\text{depth}(B_i)\} \right\} + 2.
\]

Proof. We have that

\[
u = \bigvee_{j=1}^t \left(C_j(x) \land B_j(x) \land \bigwedge_{1 \leq k < j} \neg C_k(x) \right),
\]

where \(C_t \) is a circuit computing the constant 1 and for \(j = 1 \) we have an empty conjunct in the formula which is true.

Balabanov and Jiang [2012] proved a strategy extraction result for QU-Res. Here we generalise that result to the full hierarchy of \(\mathcal{C} \)-Frege + \(\forall \text{red} \) QBF proof systems. This result is the main tool we use to prove size lower bounds in such systems.

Theorem 4.3 (Strategy Extraction). Given a false QBF \(Q \varphi \) and a refutation \(\pi \) of \(Q \varphi \) in \(\mathcal{C} \)-Frege + \(\forall \text{red} \), it is possible to extract in linear time (w.r.t. \(|\pi| \)) a collection of \(\mathcal{C} \)-decision lists \(\tilde{D} \) computing a winning strategy on the universal variables of \(\varphi \).

Proof. Let \(\pi = (L_1, \ldots, L_s) \) be a refutation of the false QBF \(Q \varphi \) and let

\[
\pi_i = \begin{cases}
\emptyset & \text{if } i = s, \\
(L_{i+1}, \ldots, L_s) & \text{otherwise}.
\end{cases}
\]

We show, by downward induction on \(i \), that from \(\pi_i \) it is possible to construct in linear time (w.r.t. \(|\pi_i| \)) a winning strategy \(\sigma^i \) for the universal player for the QBF formula \(Q \varphi_i \),
where

$$\varphi_i = \begin{cases}
\varphi & \text{if } i = 0, \\
\varphi \land L_1 \land \cdots \land L_i & \text{otherwise},
\end{cases}$$

such that for each universal variable \(u \) in \(Q \varphi \), there exists a \(\mathcal{C} \) decision list \(D^i_u \) computing \(\sigma^i_u \) as a function of the variables in \(Q \) left of \(u \), having size \(O(|\pi_i|) \).

The statement of the Strategy Extraction Theorem correspond to the case when \(i = 0 \). For the base case we can define all the \(D^i_u \) as \(u \leftarrow 0 \), as any strategy will refute this QBF, so \(\sigma^u = 0 \) is just picked arbitrarily.

We show now how to construct \(\sigma_{u-1} \) and \(D^i_{u-1} \) from \(\sigma^i_u \) and \(D^i_u \):

- If \(L_i \) is derived by some Frege rule, then for each universal variable \(u \) we set \(\sigma_u^{-1} = \sigma^i_u \) and \(D_u^{-1} = D_u^i \).

 - If \(L_i \) is the result of an application of a \(\forall \) red rule, that is \(\frac{L_j}{L_j[u/B]} \), where \(u \) is rightmost among the variables in \(L_j \), \(L_j[u/B] \) is a circuit in \(\mathcal{C} \) using only variables on the left of \(u \), and \(L_j(u/B) = L_i \). Let \(x_u \) denote all variables on the left of \(u \) in the quantifier prefix of \(Q \varphi \). Then we define

$$\sigma_u^{-1}(\bar{x}_u) = \begin{cases}
\sigma_u^i(\bar{x}_u) & \text{if } u' \neq u, \\
B(\bar{x}_u) & \text{if } u' = u \land L_j[u/B](\bar{x}_u) = 0, \\
\sigma_u^i(\bar{x}_u) & \text{if } u' = u \land L_j[u/B](\bar{x}_u) = 1.
\end{cases}$$

Moreover for each \(u' \neq u \) we set \(D_u^{i-1} = D_u^i \), and we set \(D_u^{i-1} \) as follows:

- \(\sigma_u^{-1} \) and \(D_u^{-1} \) are well defined. By construction \(L_j[u/B] \) is a formula in the variables \(\bar{x} \) left of \(u \). This immediately implies that, for each universal variable \(u' \), the strategy \(\sigma_u^{-1} \) is well defined and \(D_u^{-1} \) is also well defined. By induction hypothesis \(D_u^i \) is a \(\mathcal{C} \) decision list, so \(D_u^{i-1} \) is also a \(\mathcal{C} \) decision list.

- \(\sigma^{-1} \) and \(D^{-1} \) are constructed in linear time w.r.t. \(|\pi_i| \). This holds by inductive hypothesis and the fact that computing \(\neg L_j(u/B) \) is linear in \(|\pi_i| \) (the number of characters in this subproof).

- \(D_u^{-1} \) computes \(\sigma_u^{-1} \). For \(u' \neq u \), by induction hypothesis, \(D_u^{i-1} \) computes \(\sigma_u^i \). The same happens, by construction, for \(u' = u \).

- \(\sigma^{-1} \) is a winning strategy for \(Q \varphi \). Fix an assignment \(\rho \) to the existential variables of \(\varphi \). Let \(\tau_i \) be the complete assignment to existential and universal variables, constructed in response to \(\rho \) under the strategy \(\sigma^i \). By induction hypothesis \(\tau_i \) falsifies \(\varphi_i \). We need to show that \(\tau_{i-1} \) falsifies \(\varphi_{i-1} \). To show this we distinguish again two cases.

 - If \(L_i \) is derived by some Frege rule, then \(\sigma_u^{-1} = \sigma^i \) and \(\tau_{i-1} = \tau_i \). Hence by induction hypothesis, \(\tau_i \) falsifies a conjunct from \(\varphi_i \). To argue that \(\tau_{i-1} \) also falsifies a conjunct from \(\varphi_{i-1} \) we only need to look at the case when the falsified conjunct is \(L_i \). As \(L_i \) is false under \(\tau_i \) and \(L_i \) is derived by a sound Frege rule, one of the parent formulas of \(L_i \) in the application of the Frege rule must be falsified as well. Hence \(\tau_{i-1} \) falsifies \(\varphi_{i-1} \).

 - Let now \(L_i = L_j[u/B] \) for some \(j < i \). In this case, our strategy \(\sigma^{-1} \) changes the assignment \(\tau_i \) only when \(\tau_i \) made the universal player win by falsifying \(L_i \). As we set \(u \) to \(B(\tau_i(\bar{x})) \), the modified assignment \(\tau_{i-1} \) falsifies \(L_i \). Otherwise, if \(\tau_i \) does not
falsify \(L_i \) we keep \(\tau_{i-1} = \tau_i \) and hence falsify one of the conjuncts of \(\varphi_{i-1} \) by induction hypothesis. \(\square \)

From the proof of the Strategy Extraction Theorem it is clear that the size of the \(\mathcal{C} \)-decision list computing the winning strategy extracted from the refutation \(\pi \) has size that is actually linear in the number of applications of the \(\forall \text{red} \) rule in \(\pi \). More precisely, the size of the \(\mathcal{C} \)-decision list computing the winning strategy for variable \(u \) corresponds exactly to the number of \(\forall \text{red} \) rules on \(u \) in \(\pi \). The size of a \(\mathcal{C} \)-decision list is intended to be its string representation. Interestingly, the same observation above holds if we consider the number of entries of the \(\mathcal{C} \)-decision list. I.e. the \(\mathcal{C} \)-decision list computing the winning strategy extracted from the refutation \(\pi \) has a number of entries that is linear in the number of applications of the \(\forall \text{red} \) rule in \(\pi \).

4.1. Formalized Strategy Extraction

We now observe that the strategy extraction from Theorem 4.3 is in fact provably correct in the corresponding Frege system. In Theorem 6.2 we also give a formalization of strategy extraction in the theory of bounded arithmetic \(S_1^i \).

For this subsection (and also later occasionally) we assume w.l.o.g. that QBFs are of the form \(\exists x_1 \forall y_2 \ldots \exists x_n \forall y_n \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n) \) with only one variable per quantifier block. This is no restriction as a QBF with larger quantifier blocks can be transformed into this form by adding dummy variables to the prefix, which do not appear in the matrix of the formula. This will simplify our analysis.

Theorem 4.4. Let \(\mathcal{C} \) be \(AC^0 \), \(AC^0[p] \), \(TC^0 \), \(NC^1 \), or \(P/poly \). Given a \(\mathcal{C} \)-Frege+\(\forall \text{red} \) refutation \(\pi \) of a QBF

\[
\exists x_1 \forall y_1 \ldots \exists x_n \forall y_n \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n)
\]

where \(\varphi \in \Sigma^0_\mathcal{C} \), we can construct in time \(|\pi|^{O(1)} \) a \(\mathcal{C} \)-Frege proof of

\[
\bigwedge_{i=1}^n (y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})) \rightarrow \neg \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n)
\]

for some circuits \(C_i \in \mathcal{C} \). (The depth of the \(\mathcal{C} \)-Frege proof increases by a constant compared to the depth of the \(\mathcal{C} \)-Frege+\(\forall \text{red} \) proof.)

Proof. We inspect the proof of the Strategy Extraction Theorem above. Let again \(\pi = (L_1, \ldots, L_s) \) be a \(\mathcal{C} \)-Frege+\(\forall \text{red} \) refutation of a QBF \(Q \varphi \) given as

\[
\exists x_1 \forall y_1 \ldots \exists x_n \forall y_n \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n)
\]

where \(\varphi \in \Sigma^0_\mathcal{C} \) and define \(\pi_i \) and \(\varphi_i \) as in the proof of Theorem 4.3. We will show by downward induction on \(i \), that from \(\pi_i \) it is possible to construct in linear time a winning strategy

\[
\sigma^i = \{ C^i_1(x_1)^i, \ldots, C^i_n(x_1, \ldots, x_n, y_1, \ldots, y_{n-1}) \} \subseteq \mathcal{C}
\]

for the universal player for the QBF \(Q \varphi_i \). Moreover, the formula

\[
\bigwedge_{i=1}^n (y_i \leftrightarrow C^i_1(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})) \rightarrow \neg \varphi_i(x_1, \ldots, x_n, y_1, \ldots, y_n)
\]

denoted \(\sigma^i(\varphi_i) \) which witnesses the negation of \(Q \varphi \) will have a \(\mathcal{C} \)-Frege proof of size \(K|\pi_i|^K \) for a constant \(K \) depending only on the choice of the \(\mathcal{C} \)-Frege system. The statement of the theorem corresponds to the case \(i = 0 \).

In the base case, \(\varphi_0 \) contains a contradiction so the winning strategy can be defined as the set of trivial circuits \(\{0, \ldots, 0\} \) and it is trivially provably correct.
Assume now that \(\sigma^i(\phi_i) \) has a \(\mathcal{C} \)-Frege proof of size \(K(s+1-i)|\pi_i|^K \).

If \(L_i \) is derived by a \(\mathcal{C} \)-Frege rule, then \(\sigma^{i-1} = \sigma^i \).

Let now \(L_i = L_j[u/B] \) be the result of an application of a \(\forall_{\text{red}} \) rule on \(L_j \) where \(u \) is innermost among the variables in \(L_j \). Then define \(C_i^{j-1} = C_i^j \) if \(u \neq y_l \), otherwise set

\[
C_i^{j-1}(z) = \begin{cases}
B(z) & \text{if } L_j[u/B](z) = 0 \\
C_i^j(z) & \text{if } L_j[u/B](z) = 1.
\end{cases}
\]

This constructs strategies \(\sigma^i \) from \(\pi \) by a \(D|\pi_i|\)-time algorithm for a constant \(D \).

W.l.o.g. \(D < K \). In fact, circuits \(C_i^j \) are in \(\mathcal{C} \). (For constant depth \(\mathcal{C} \)'s, we take for circuits \(C_i^j \) the equivalent constant-depth circuits from Proposition 4.2.)

We want to show that \(\sigma^{i-1}(\varphi_{i-1}) \) has a \(\mathcal{C} \)-Frege proof of size \(K(s+1-(i-1))|\pi_{i-1}|^K \).

If \(L_i \) is derived by a \(\mathcal{C} \)-Frege rule, then \(\sigma^i \) also witnesses \(\neg\varphi_{i-1} \) because

\[
\neg L_i \rightarrow \neg(\bigwedge_{l=1}^i L'_{l})
\]

for some conjuncts \(L'_1, \ldots, L'_i \) in \(\varphi_{i-1} \). Note that \(C_i^{j-1} \)'s are then \(C_i^j \)'s. The implications

\[
\neg \varphi_i \rightarrow \neg \varphi_{i-1} \tag{8}
\]

\[
\sigma^i(\varphi_i) \wedge (\neg \varphi_i \rightarrow \neg \varphi_{i-1}) \rightarrow \sigma^{i-1}(\varphi_{i-1}) \tag{9}
\]

can be derived by a fixed sequence of \(\mathcal{C} \)-Frege rules depending only on the choice of \(\mathcal{C} \)-Frege. (Note that the left-hand sides of the implications \(\sigma^i(\varphi_i) \) and \(\sigma^{i-1}(\varphi_{i-1}) \) are identical, because \(\sigma^{i-1} = \sigma^i \) in this case.) Thus, the common size of \(\mathcal{C} \)-Frege proofs of both these implications is \(\leq K_0|\pi_{i-1}|^{K_0} \) where w.l.o.g. \(K_0 < K \). Therefore \(\sigma^{i-1}(\varphi_{i-1}) \) has a \(\mathcal{C} \)-Frege proof of size \(\leq K(s+1-(i-1))|\pi_{i-1}|^K \leq K(s+1-(i-1))|\pi_{i-1}|^K \)

where \(K_1 > K_0 \) depends again on a fixed sequence of \(\mathcal{C} \)-Frege rules needed to derive \(\sigma^{i-1}(\varphi_{i-1}) \) from (8), (9) and \(\sigma^i(\varphi_i) \), so w.l.o.g. \(K_1 < K \).

Assume now that \(L_i = L_j[u/B] \) is the result of an application of \(\forall_{\text{red}} \) where \(u = y_l \).

Then there is a fixed sequence of \(\mathcal{C} \)-Frege rules deriving the implications

\[
\sigma^i(\varphi_i) \land \neg L_j[u/B] \rightarrow \sigma^{i-1}(\varphi_{i-1}) \tag{10}
\]

\[
\sigma^i(\varphi_i) \land L_j[u/B] \rightarrow \sigma^{i-1}(\varphi_{i-1}) \tag{11}
\]

Formula (10) follows from the provable formula \(L_j \land (u \leftrightarrow B) \rightarrow L_j[u/B] \), because \(L_j \) is a conjunct in \(\varphi_{i-1} \), \(u = y_l \) and \(C_i^{j-1} \) is \(B \), because \(\neg L_j[u/B] \) holds in this case. Formula (11) follows from the provable formula \(\varphi_{i-1} \land L_j[u/B] \rightarrow \varphi_i \) and \(\land_{u=1}^n y_l \leftrightarrow C_i^{j-1} \) under the condition that \(C_i^{j-1} = C_i^j \) which is the case if \(L_j[u/B] \) holds.

The total size of both \(\mathcal{C} \)-Frege derivations of (10) and (11) is \(K_0|\pi_{i-1}|^{K_0} \) where \(K_0 \) depends on the choice of \(\mathcal{C} \)-Frege and the size of \(C_i^{j-1} \)'s. The size of all \(C_i^{j-1} \)'s is bounded by \(K|\pi_{i-1}|^K \). Hence we can assume \(K_0 < K \). It follows that \(\sigma^{i-1}(\varphi_{i-1}) \) has a \(\mathcal{C} \)-Frege proof of size \(\leq K(s+1-(i-1))|\pi_{i-1}|^K \leq K(s+1-(i-1))|\pi_{i-1}|^K \) where as before \(K_1 \) depends on a fixed sequence of \(\mathcal{C} \)-Frege rules needed to simulate a fixed set of ‘cut’ rules, i.e., w.l.o.g. \(K_1 < K \).

\[\square \]

4.2. Normal forms for \(\mathcal{C} \)-Frege + \(\forall_{\text{red}} \) proofs

We conclude this section with an application of the Strategy Extraction Theorem to obtain normal forms for \(\mathcal{C} \)-Frege + \(\forall_{\text{red}} \) proofs. Firstly, we show that any \(\mathcal{C} \)-Frege + \(\forall_{\text{red}} \) refutation can be efficiently rewritten as a \(\mathcal{C} \)-Frege derivation followed essentially just by \(\forall_{\text{red}} \) rules. Secondly, we show that in the \(\forall_{\text{red}} \) rule it is sufficient to only substitute constants.
THEOREM 4.5. Let \mathcal{C} be AC^0, $\text{AC}^0[p]$, TC^0, NC^1, or P/poly. For any \mathcal{C}-Frege+\forallred refutation π of a QBF ψ of the form

$$\exists x_1 \forall y_1 \cdots \exists x_n \forall y_n \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$

where $\varphi \in \Sigma^p_\forall$, there is a $|\pi|^{O(1)}$-size \mathcal{C}-Frege+\forallred refutation of ψ starting with a \mathcal{C}-Frege derivation of

$$\bigwedge_{i=1}^n \left(y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1}) \right) \rightarrow \neg \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n). \quad (12)$$

from φ for some circuits $C_i \in \mathcal{C}$, followed by n applications of the \forallred rule, gradually replacing the rightmost variable y_i by circuit $C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})$ and cutting the inequality $y_i \not\leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})$ out of the disjunction (12).

PROOF. Given a \mathcal{C}-Frege+\forallred refutation π of ψ, by Theorem 4.4, there is a $|\pi|^{O(1)}$-size \mathcal{C}-Frege proof of

$$\bigwedge_{i=1}^n \left(y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1}) \right) \rightarrow \neg \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n).$$

Having φ freely available in the refutation, \mathcal{C}-Frege can derive (12) by applying the cut rule (derivable in \mathcal{C}-Frege).

The refutation then continues by n applications of the \forallred rule, which one by one replaces the rightmost variable y_i by $C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})$ and eliminates

$$y_i \not\leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})$$

from the disjunction $\bigvee_i y_i \not\leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})$. \qed

Theorem 4.5 is an analogue of the midsequent theorem for sequent systems. An immediate consequence of Theorem 4.5 is the p-equivalence of \mathcal{C}-Frege+\forallred and its tree-like version. This is in contrast to the G_1, G_0 systems where one has p-simulations of dag systems by tree systems only for prenex Σ^p_\forall-formulas (see [Cook and Morioka 2005, Theorem 6] and the discussion after the proof).

COROLLARY 4.6. Let \mathcal{C} be AC^0, $\text{AC}^0[p]$, TC^0, NC^1, or P/poly. Then \mathcal{C}-Frege+\forallred is p-equivalent to tree-like \mathcal{C}-Frege+\forallred.

PROOF. By Theorem 4.5, any \mathcal{C}-Frege+\forallred derivation can be efficiently replaced by a proof in the normal form. The \mathcal{C}-Frege part of such derivation can be efficiently replaced by a tree-like \mathcal{C}-Frege proof, cf. [Krajíček 1995], and the rest of the \mathcal{C}-Frege+\forallred refutation given in the normal form is tree-like. \qed

Finally we further simplify \mathcal{C}-Frege+\forallred so that every application of the \forallred rule only substitutes constants $0/1$ instead of general circuits. We denote the resulting system as \mathcal{C}-Frege+\forallred$_{0,1}$. This shows that \mathcal{C}-Frege+\forallred systems are indeed very robustly defined.

THEOREM 4.7. Let \mathcal{C} be AC^0, $\text{AC}^0[p]$, TC^0, NC^1, or P/poly. Then, \mathcal{C}-Frege+\forallred and \mathcal{C}-Frege+\forallred$_{0,1}$ are p-equivalent.

PROOF. It is enough to show that any \mathcal{C}-Frege+\forallred refutation can be transformed efficiently into a refutation where the \forallred rule substitutes only constants. By Theorem 4.5, for any \mathcal{C}-Frege+\forallred refutation π of $Q \varphi$ there is a $|\pi|^{O(1)}$-size \mathcal{C}-Frege deriva-
We now introduce a class of QBFs defined from some circuits C_n computing a function f. Choosing different functions f, these formulas will form the basis of our lower bounds.

Definition 5.1 (Q-C_n). Let n be an integer and C_n be a circuit with inputs x_1, \ldots, x_n. Let t_1, \ldots, t_{m-1} be a topological ordering of the internal gates of C_n, and let the output gate of C_n be t_m. We define

$$Q-C_n = \exists x_1 \cdots \exists x_n \forall u \exists t_1 \cdots \exists t_m (u \leftrightarrow t_m) \land \bigwedge_{i=1}^m G_i,$$

where $u \leftrightarrow t_m \equiv (u \lor t_m) \land (\neg u \lor \neg t_m)$ and G_i expresses as a CNF the function computed in the circuit C_n at gate i, e.g. if node t_i computes the AND of t_j and t_k then

$$G_i = t_i \leftrightarrow (t_j \land t_k) \equiv (t_i \lor t_j) \land (\neg t_i \lor t_k) \land (t_i \lor \neg t_j \lor \neg t_k),$$

similarly if gate i computes \neg, \lor, \oplus, MOD_p, T_k or some other Boolean function.

Informally, the QBF Q-C_n expresses that there exists an input \vec{x} such that $C_n(\vec{x})$ neither evaluates to 0 nor 1, an obvious contradiction as C_n computes a total function on $\{0, 1\}^n$. The formulas G_i can be considered as the result of a Tseitin translation used widely in SAT and QBF solving. We intentionally place the universal variable u to the left of the Tseitin variables t_i, thus making the Tseitin variables inaccessible when constructing the strategy of u. We note that the hardness of the formulas crucially depends on this choice of the order of quantification (compare also [Beyersdorff et al. 2016]).

Using these formulas together with the Strategy Extraction Theorem, we now establish a tight connection between the circuit class \mathcal{C} and \mathcal{C}-Frege + \forallred.

Theorem 5.2. Let \mathcal{C} be one of the circuit classes AC^0, $AC^0[p]$, TC^0, NC^1, $P/poly$ and let $(C_n)_{n \in \mathbb{N}}$ be a non-uniform family of circuits where C_n is a circuit with n inputs. Then the following implications hold:

(i) if the QBFs $Q-C_n$ have \mathcal{C}-Frege + \forallred refutations of size bounded by a function $q(n)$, then for each n, C_n is equivalent to a circuit C'_n where C'_n is of size $O(q(n))$ and uses the gates and depth allowed in \mathcal{C};

(ii) if $(C_n)_{n \in \mathbb{N}}$ is a polynomial-size circuit family from \mathcal{C} then the QBFs $Q-C_n$ have polynomial-size refutations in \mathcal{C}-Frege + \forallred.
proof. Regarding (i), by the Strategy Extraction Theorem and Proposition 4.2, if the QBF \(Q \cdot C_n\) has a refutation in \(\mathcal{C} \cdot \text{Frege} + \forall \text{red}\) of size \(S\) then a winning strategy for the universal player can be computed by a circuit \(C'_n \in \mathcal{C}\) of size \(O(S)\). We have that in \(Q \cdot C_n\) the quantifier prefix looks like \(\exists x_1 \cdots \exists x_n \forall u \exists t\). Now, by construction, \(u \not\equiv C_n(x_1, \ldots, x_n)\), hence a winning strategy for the universal player must consist of playing \(u = C_n(x_1, \ldots, x_n)\). This means that the circuit \(C'_n\), computing the winning strategy for the universal player is equivalent to the circuit \(C_n\) and the size bound follows.

Note that the circuits \(C'_n\) and \(C_n\) are equivalent but not identical. The first one \(C'_n\) is the strategy extracted from a decision list and depends on the proof in question, whereas \(C_n\) is the original circuit encoded into \(Q \cdot C_n\) with Tseitin variables.

Regarding (ii), we define the \(t_i\) variables (1 \(\leq i \leq m\)) for \(Q \cdot C_n\) as in Definition 5.1. By definition, the \(t_i\) are indexed w.r.t. a topological ordering of the nodes of \(C_n\).

We prove, by induction on \(i\), that there exists a circuit \(D_i \in \mathcal{C}\) such that \(t_i \leftrightarrow D_i\) is derivable in \(\mathcal{C} \cdot \text{Frege}\) with size polynomial in \(|D_i|\).

In the base case we have that \(\mathcal{C} \cdot \text{Frege}\) is able to prove \(x \leftrightarrow x\) for every input variable \(x\).

For the inductive step, suppose that \(t_i\) corresponds to a gate \(\circ(t_{j_1}, \ldots, t_{j_k})\) with fan-in \(t\), where \(\circ\) could be an \(\land, \lor, \neg, \oplus, \text{MOD}_p, T_k, \ldots\) from the gates allowed in the class \(\mathcal{C}\) and \(j_1 \leq j_2 \leq \cdots \leq j_k\) is a sequence of indices less than \(i\). By the inductive property we know that \(t_k \leftrightarrow D_k\) is provable in \(\mathcal{C} \cdot \text{Frege}\) with proofs of size polynomial in \(|D_k|\), for every \(k < i\) (as well as any input variables). Hence \(t_k \leftrightarrow D_k\) is provable in \(\mathcal{C} \cdot \text{Frege}\) with proofs of size polynomial in \(|D_k|\) for every input gate variable \(t_{j_k}\). Moreover, \(\mathcal{C} \cdot \text{Frege}\) is able to make the following inference in a polynomial number of steps

\[
\frac{t_{j_1} \leftrightarrow D_{j_1} \quad \cdots \quad t_{j_k} \leftrightarrow D_{j_k} \quad t_i \leftrightarrow \circ(t_{j_1}, \ldots, t_{j_k})}{t_i \leftrightarrow \circ(D_{j_1}, \ldots, D_{j_k})}.
\]

Let then \(D_i = \circ(D_{j_1}, \ldots, D_{j_k})\). At the \(m\)-th step \(\mathcal{C} \cdot \text{Frege}\) proves that \(t_m \leftrightarrow D_m\), from which follows that

\[
\frac{t_m \leftrightarrow D_m \quad u \leftrightarrow \neg t_m}{u \leftrightarrow \neg D_m}.
\]

Since now \(u\) is universal and the innermost variable of \(u \leftrightarrow \neg D_m\), we can apply the \(\forall \text{red}\) rule and get \(0 \leftrightarrow \neg D_m, 1 \leftrightarrow \neg D_m\), which leads to an immediate contradiction in the QBF proof system \(\mathcal{C} \cdot \text{Frege} + \forall \text{red}\).

In particular, a Boolean function \(f\) is computable by polynomial-size \(\mathcal{C}\) circuits if and only if \(Q \cdot C_n\) have polynomial-size \(\mathcal{C} \cdot \text{Frege}\) refutations for each choice of Boolean circuits \((C_n)_{n \in \mathbb{N}}\) computing \(f\). Note that the circuits \(C_n\) are not necessarily circuits in the class \(\mathcal{C}\).

In the remainder of this section we apply Theorem 5.2 to a number of circuit classes and transfer circuit lower bounds to proof size lower bounds.

5.1. Lower bounds for bounded-depth QBF Frege systems

PARITY is one of the best-studied functions in terms of its circuit complexity. With Theorem 5.2 we can immediately transfer circuit lower bounds for PARITY to \(AC^0[p] \cdot \text{Frege} + \forall \text{red}\), regardless of the encoding for PARITY.

Corollary 5.3 (Q-PARITY LOWER BOUNDS). Let \(C_n\) be a family of polynomial-size circuits computing PARITY. For each odd prime \(p\) the QBFs \(Q \cdot C_n\) require refutations of exponential size in \(AC^0[p] \cdot \text{Frege} + \forall \text{red}\).
PROOF. The exponential lower bound for the refutation size in $AC^0[p]$-Frege + $\forall\text{red}$ follows from Theorem 5.2 and the fact that for each odd prime p any family of bounded-depth circuits with MOD_p gates computing PARITY must be of exponential size [Razborov 1987; Smolensky 1987]. □

We highlight that non-trivial lower bounds for $AC^0[p]$-Frege are one of the major open problems in propositional proof complexity. We complement the lower bound in Corollary 5.3 with an upper bound for arbitrary NC^1 encodings of PARITY in Frege + $\forall\text{red}$.

Corollary 5.4 (Q-Parity Upper Bounds). Let C_n be a family of NC^1 circuits computing PARITY. Then the $Q\text{BFs}$ $Q\cdot C_n$ have polynomial-size refutations in Frege + $\forall\text{red}$.

Proof. By a result of Muller and Preparata [1975], PARITY can be computed by circuits in NC^1. Hence, if we consider a family C_n of NC^1 circuits computing PARITY then the polynomial upper bound in Frege + $\forall\text{red}$ follows immediately from Theorem 5.2. □

In fact, this upper bound can be improved to the $Q\text{BF}$ proof system $AC^0[2]$-Frege + $\forall\text{red}$, albeit not for arbitrary NC^1-encodings of PARITY, as it is not clear how these could be handled in bounded depth. For this purpose, we consider explicit $Q\text{BFs}$ for PARITY, which can be built from its inductive definition $\text{PARITY}(x_1,\ldots,x_n) = \text{PARITY}(x_1,\ldots,x_{n-1}) \oplus x_n$. This leads to the $Q\text{BFs}$

$$\Phi_n = \exists x_1 \cdots \exists x_n \forall u \exists t_2 \cdots \exists t_n \left(t_2 \leftrightarrow (x_1 \oplus x_2) \right) \land \bigwedge_{i=3}^{n} \left(t_i \leftrightarrow (t_{i-1} \oplus x_i) \right) \land (u \leftrightarrow \neg t_n),$$

where $a \leftrightarrow (b \oplus c) \equiv (a \land \neg b \land \neg c) \land (a \land b \land \neg c) \land (a \land \neg b \land c) \land (a \land b \land c)$. This formulation of $Q\text{-PARITY}$ was considered by Beyersdorff et al. [2015], where the formulas Φ_n are shown to be hard for $Q\text{-Res}$ and $QU\text{-Res}$. Here we obtain:

Corollary 5.5. The $Q\text{-PARITY}$-formulas Φ_n require refutations of exponential size in $AC^0[p]$-Frege + $\forall\text{red}$ for each odd prime p, but they have polynomial-size $AC^0[2]$-Frege + $\forall\text{red}$ refutations.

Proof. The lower bound follows as in Corollary 5.3. For the upper bound we cannot use Theorem 5.2, but need to give a more direct proof. Without loss of generality we can assume that our $AC^0[2]$-Frege + $\forall\text{red}$ system uses the connectives $\{\land, \lor, \neg, \leftrightarrow, \oplus\}$.

Then it is easy to see, by induction on i, that Frege proves $t_i \leftrightarrow \oplus(x_1, x_2, \ldots, x_i)$ with a proof of size linear in i for each $i = 2, \ldots, n$. Hence, similarly to what was done in Theorem 5.2, we get

$$u \leftrightarrow \neg \oplus (x_1, x_2, \ldots, x_n).$$

Then u is the rightmost variable in (13); hence by the $\forall\text{red}$ rule we have

$$1 \leftrightarrow \neg \oplus (x_1, x_2, \ldots, x_n) \quad \text{and} \quad 0 \leftrightarrow \neg \oplus (x_1, x_2, \ldots, x_n),$$

which gives an immediate contradiction. □

In fact, we can further strengthen Corollary 5.5 and use Smolensky’s circuit lower bounds for an even more ambitious separation of all $AC^0[p]$-Frege + $\forall\text{red}$ systems. For this we consider the function

$$MOD_p(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} x_i \equiv 0 \pmod{p} \\ 0 & \text{otherwise.} \end{cases}$$
For $r \leq p - 1$ let
\[
MOD_{p,r}(x_1,\ldots,x_n) = \begin{cases}
1 & \text{if } \sum_{i=1}^{n} x_i \equiv r \pmod{p} \\
0 & \text{otherwise}.
\end{cases}
\]

If we want to use MOD_p for a separation of $AC^0[p]$-Frege + \forallred and $AC^0[q]$-Frege + \forallred for different primes p, q, then MOD_p has to be encoded as a QBF in the language common to both proof systems, which means that we cannot use MOD_p or MOD_q gates. As for PARITY, an arbitrary NC^1 encoding as in Corollary 5.3 will also not work (this would just give upper bounds in Frege + \forallred), so we need to devise again explicit QBF encodings for MOD_p. Such QBFs can be built using the fact that MOD_p, that is $MOD_{p,0}$, can be defined for $r \neq 0$ by
\[
MOD_{p,r}(x_1,\ldots,x_i) = (MOD_{p,r}(x_1,\ldots,x_{i-1}) \land \neg x_i) \lor (MOD_{p,r-1}(x_1,\ldots,x_{i-1}) \land x_i),
\]
and for $r = 0$ by
\[
MOD_{p,0}(x_1,\ldots,x_i) = (MOD_{p,0}(x_1,\ldots,x_{i-1}) \land \neg x_i) \lor (MOD_{p-1}(x_1,\ldots,x_{i-1}) \land x_i).
\]

Using variables s_i^r for $MOD_{p,r}(x_1,\ldots,x_i)$ this leads to the QBFs
\[
\Theta^p_n = \exists x_1 \cdots \exists x_n \forall u \exists s_0^0 \exists s_1^0 \exists s_2^0 \ldots \exists s_n^0 \cdots \exists s_n^p-1 (u \leftrightarrow \neg s_n^0) \land (s_i^0 \leftrightarrow x_1) \land (s_i^r \leftrightarrow \neg x_1) \land \\
\bigwedge_{1 < i \leq n} \big(s_i^r \leftrightarrow (s_{i-1}^r \land \neg x_i) \lor (s_{i-1}^{r-1} \land x_i) \big) \land \bigwedge_{0 < r \leq p-1} \big(s_i^r \leftrightarrow (s_{i-1}^r \land \neg x_i) \lor (s_{i-1}^{r-1} \land x_i) \big).
\]

Corollary 5.6. For each pair p, q of distinct primes the MOD_p-formulas Θ^p_n require refutations of exponential size in $AC^0[q]$-Frege + \forallred, but have polynomial-size refutations in $AC^0[p]$-Frege + \forallred.

Proof. The exponential lower bound for the QBF proof system $AC^0[q]$-Frege + \forallred follows from Theorem 5.2 together with the result from [Razborov 1987; Smolensky 1987] that for distinct primes p, q any family of bounded-depth circuits with MOD_q gates computing MOD_p must be of exponential size.

Regarding the upper bound, without loss of generality we can assume that our $AC^0[p]$-Frege system uses the connectives $\{\land, \lor, \neg, \leftrightarrow, MOD_p\}$. Then it is easy to see, by induction on i, that $AC^0[p]$-Frege proves
\[
s_i^r \leftrightarrow MOD_p(x_1,\ldots,x_{i-1},1,\ldots,1),
\]
with a proof of size linear in i. Hence, similarly to what was done in Theorem 5.2 and Corollary 5.5, we get
\[
u \leftrightarrow \neg MOD_p(x_1,\ldots,x_n,1,\ldots,1).
\]

Then u is the rightmost variable in (14); hence by the \forallred rule we have
\[
1 \leftrightarrow \neg MOD_p(x_1,\ldots,x_n,1,\ldots,1) \text{ and } 0 \leftrightarrow \neg MOD_p(x_1,\ldots,x_n,1,\ldots,1),
\]
which gives an immediate contradiction. \square

Another notorious function in circuit complexity is MAJORITY. Again we can transform circuit lower bounds to proof size lower bounds for arbitrary encodings of MAJORITY.
Corollary 5.7 (Lower Bounds for Q-Majority). Let C_n be a family of polynomial-size circuits computing $\text{MAJORITY}(x_1, \ldots, x_n)$. Then for every prime p, the QBFs $Q\cdot C_n$ require refutations of exponential size in $\text{AC}^0[p]\cdot\text{Frege} + \forall\text{red}$.

Proof. The lower bound follows again applying Theorem 5.2 and the fact that MAJORITY requires exponential-size bounded-depth circuits with MOD_p gates [Razborov 1987; Smolensky 1987].

For general encodings, we can again show $\text{Frege} + \forall\text{red}$ upper bounds.

Corollary 5.8 (Q-Majority Upper Bounds). Let C_n be a family of NC^1 circuits computing $\text{MAJORITY}(x_1, \ldots, x_n)$. Then the QBFs $Q\cdot C_n$ have polynomial-size refutations in the QBF proof system $\text{Frege} + \forall\text{red}$.

Proof. By a result of Muller and Preparata [1975], the function MAJORITY is computable in NC^1 and hence $Q\cdot C_n$ are well defined. The upper bound then follows from Theorem 5.2.

As for the MOD_p functions, we can improve on this upper bound by considering explicit QBF encodings of MAJORITY, thereby even obtaining a separation of $\text{AC}^0[p]\cdot\text{Frege} + \forall\text{red}$ systems from $\text{TC}^0\cdot\text{Frege} + \forall\text{red}$.

Explicit QBFs for MAJORITY can be defined using the following property of the k-threshold function

$$T_k(x_1, \ldots, x_i) \equiv T_k(x_1, \ldots, x_{i-1}) \lor (T_{k-1}(x_1, \ldots, x_{i-1}) \land x_i).$$

(15)

Using variables t_i^k for $T_k(x_1, \ldots, x_i)$ this gives rise to the QBFs

$$\Psi_n = \exists x_1 \cdots \exists x_n \forall u \exists t_1^1 \cdots \exists t_{n/2}^n (u \leftrightarrow t_{n/2}^n) \land \bigwedge_{i \leq n} t_i^1 \land (t_1^1 \leftrightarrow x_1) \land \bigwedge_{i \leq n/2} (t_i^k \leftrightarrow t_{i-1}^k \lor (t_{i-1}^k \land x_i)).$$

Corollary 5.9. For each prime p the Majority-based formulas Ψ_n require refutations of exponential-size in the QBF proof system $\text{AC}^0[p]\cdot\text{Frege} + \forall\text{red}$, but have polynomial-size refutations in $\text{TC}^0\cdot\text{Frege} + \forall\text{red}$.

Proof. The exponential lower bound from [Razborov 1987; Smolensky 1987] will give us the exponential lower bound w.r.t. the size of Ψ_n in $\text{AC}^0[p]\cdot\text{Frege} + \forall\text{red}$, since the size of Ψ_n is $O(n^2)$.

Regarding the polynomial-size refutations of the QBF formula Ψ_n in $\text{TC}^0\cdot\text{Frege} + \forall\text{red}$ we can proceed similarly as for PARITY in Frege. The crucial feature here is that T_k are, by definition of TC^0, in the language of $\text{TC}^0\cdot\text{Frege}$. Hence (15) can be used to prove $t_i^k \leftrightarrow T_k(x_1, \ldots, x_j)$ and we can easily refute Ψ_n in $\text{TC}^0\cdot\text{Frege} + \forall\text{red}$. □

We note that a separation of $\text{AC}^0[p]\cdot\text{Frege}$ from $\text{TC}^0\cdot\text{Frege}$ constitutes a major open problem in propositional proof complexity as we are currently lacking lower bounds for $\text{AC}^0[p]\cdot\text{Frege}$.

\[\text{^[6]}\text{Clearly, such a separation already follows from Corollary 5.6 together with the simulation of } \text{AC}^0[p]\cdot\text{Frege} + \forall\text{red by } \text{TC}^0\cdot\text{Frege} + \forall\text{red. Here we will prove the stronger result that all these systems are separated by one natural principle, namely } \text{MAJORITY}.\]
5.2. Lower bounds for constant depth QBF Frege systems

We now aim at a fine-grained analysis of AC^0-Frege by studying its subsystems AC^0_d-Frege. Our next result is a version of Theorem 5.2, however, we need to be a bit more careful for circuits of fixed depth d.

Theorem 5.10. Let $(C_n)_{n \in \mathbb{N}}$ be a non-uniform family of circuits where C_n is a circuit with n inputs. Then the following implications hold:

(i) if the QBFs $\forall C_n$ have AC^0_d-Frege + \forallred refutations of size bounded by a function $g(n)$, then for each n, C_n is equivalent to a depth-$(d + 2)$ circuit C'_n of size $O(g(n))$;

(ii) if $(C_n)_{n \in \mathbb{N}}$ is a family of polynomial-size depth-d circuits, then the QBFs $\forall C_n$ have polynomial-size refutations in AC^0_d-Frege + \forallred.

Proof. The proof of (i) follows the proof of the analogous statement of Theorem 5.2. The Strategy Extraction Theorem in this case tells us that from refutations of $\forall C_n$ in AC^0_d-Frege + \forallred of size S we can extract a winning strategy for the universal player that can be computed by AC^0_{d+2}-decision lists of size $O(S)$. By Proposition 4.2, this means that the winning strategy can be also computed by AC^0_{d+2} circuits and the size upper bound follows.

The proof of point (ii) follows the proof of the analogous statement of Theorem 5.2. That proof will give us that $\forall C_n$ has polynomial-size refutations in AC^0_{d+2}-Frege + \forallred. Here we want to prove that $\forall C_n$ has actually polynomial-size proofs in AC^0_d-Frege + \forallred. Without loss of generality suppose that the last gate t_m of C_n is an \wedge with fan-in ℓ, that is

$$\forall C_n = \exists x_1 \cdots \exists x_n \forall u \exists t_1 \cdots \exists t_m (u \leftrightarrow \neg t_m) \wedge (t_m \leftrightarrow \bigwedge_{j \leq \ell} t_{ij}) \wedge \varphi_n,$$

where each t_{ij} is an \lor gate and φ_n is the encoding of the rest of the circuit C_n. We clearly have that

$$\begin{array}{c|c}
\forall u \leftrightarrow \neg t_m & t_m \leftrightarrow \bigwedge_{j \leq \ell} t_{ij} \\
\hline
u \leftrightarrow \bigvee_{j \leq \ell} \neg t_{ij}
\end{array}$$

from which we obtain both

$$u \lor \bigwedge_{j \leq \ell} t_{ij}, \quad (16)$$

$$\neg u \lor \bigvee_{j \leq \ell} \neg t_{ij}. \quad (17)$$

Now we can proceed, similarly as in Theorem 5.2. By induction (on the depth of C_n) AC^0_{d+2}-Frege is able to substitute t_{ij}, with D_{ij}, where D_{ij} is an AC^0_{d-1}-formula over the x_1, \ldots, x_n variables starting with an \lor. More precisely by induction we can prove that AC^0_{d}-Frege proves both

$$t_{ij} \lor \neg D_{ij}, \quad (18)$$

$$\neg t_{ij} \lor D_{ij}. \quad (19)$$

Hence from (17) and (18) follows that $\neg u \lor \bigvee_{j \leq \ell} \neg D_{ij}$, which is an AC^0_d-formula only over the variables u, x_1, \ldots, x_n. Hence by the \forallred rule we get

$$\bigvee_{j \leq \ell} \neg D_{ij}. \quad (20)$$
Similarly from (16) we get first that \(\bigwedge_{j \leq \ell} (u \lor t_{ij})\) and then using (19) we get \(\bigwedge_{j \leq \ell} (u \lor D_{ij})\), which, again, is an \(\text{AC}_0^d\)-formula over the variables \(u, x_1, \ldots, x_n\). By the \(\forall_{\text{red}}\) rule we get

\[
\bigwedge_{j \leq \ell} D_{ij}.
\]

From (20) and (21) follows immediately a contradiction. \(\square\)

From Theorem 5.10 we obtain a wealth of lower bounds for \(\text{Res} + \forall_{\text{red}}\).

Corollary 5.11. Let \(f(x_1, \ldots, x_n)\) be a Boolean function requiring exponential-size depth-3 circuits and let \((C_n)_{n \in \mathbb{N}}\) be polynomial-size circuits (of unbounded depth) computing \(f\). Then the QBFs \(Q-C_n\) require exponential-size refutations in \(\text{AC}_1^0\)-Frege + \(\forall_{\text{red}}\) and hence, in particular, in \(\text{Res} + \forall_{\text{red}}\).

We now prove a separation of constant-depth Frege + \(\forall_{\text{red}}\) systems. For this we employ the Sipser functions separating the hierarchy of constant-depth circuits. We quote the definition of the Sipser function from Boppana and Sipser [1990]:

\[
\text{SIPSER}_d = \bigwedge_{i_1 \leq m_1} \bigvee_{i_2 \leq m_2} \cdots \bigwedge_{i_d \leq m_d} \bigcirc_{i_1i_2i_3...i_d},
\]

where \(\bigcirc = \lor\) or \(\land\) depending on the parity of \(d\). The variables \(x_1, \ldots, x_n\) appear as \(x_{i_1i_2i_3...i_d}\) for \(i_j \leq m_j\), where \(m_1 = \sqrt{m/\log m}, m_2 = m_3 = \cdots = m_{d-1} = m, m_d = \sqrt{dm \log m/2}\) and \(m = (n\sqrt{2/d})^{1/(d-1)}\).

Corollary 5.12. Fix an integer \(d \geq 2\). Let \((C_n^d)_{n \in \mathbb{N}}\) be a family of polynomial-size depth-\((d + 3)\) circuits computing the function \(\text{SIPSER}_{d+3}(x_1, \ldots, x_n)\). Then the QBFs \(Q-C_n^d\) need exponential-size refutations in \(\text{AC}_1^d\)-Frege + \(\forall_{\text{red}}\), but have polynomial-size refutations in \(\text{AC}_{d+3}^0\)-Frege + \(\forall_{\text{red}}\).

Proof. The lower bound follows from Theorem 5.10 and from the result that for every \(d\), \(\text{SIPSER}_{d+3}\) needs exponential-size depth-\((d + 2)\) circuits [Håstad 1986]. Regarding the upper bound, by construction \(C_n^d\) has depth \(d + 3\) and polynomial-size. Hence, by Theorem 5.10, the family \(Q-C_n^d\) has polynomial-size refutations in \(\text{AC}_{d+3}^0\)-Frege + \(\forall_{\text{red}}\). \(\square\)

Note that the gap of size 1 in the circuit separation of Håstad [1986] increases to a gap of size 3 in our proof system separation, due to the transformation in Proposition 4.2. We highlight that in contrast to Corollary 5.12 where our separating formulas are CNFs, a separation of the depth-\(d\) Frege hierarchy with formulas of depth independent of \(d\) is a major open problem in propositional proof complexity.

5.3. Characterizing QBF Frege and extended Frege lower bounds

We finally address the question of lower bounds for Frege + \(\forall_{\text{red}}\) or even \(\text{EF} + \forall_{\text{red}}\). Our next result states that achieving such lower bounds unconditionally will either imply a major breakthrough in circuit complexity or a major breakthrough in classical proof complexity. (Notice that it might be much easier to obtain the disjunction than any of the disjuncts.)

Theorem 5.13. Let \(\mathcal{C}\) be either \(\text{P/poly}\) or \(\text{NC}^1\). \(\mathcal{C}\)-Frege + \(\forall_{\text{red}}\) is not polynomially bounded if and only if \(\text{PSPACE} \nsubseteq \mathcal{C}\) or \(\mathcal{C}\)-Frege is not polynomially bounded.\(^7\)

\(^7\)By \(\text{NC}^1\) we mean non-uniform \(\text{NC}^1\). Note that by the space hierarchy theorem it is known that \(\text{PSPACE} \nsubseteq \text{uniform NC}^1\), but this does not suffice for Frege + \(\forall_{\text{red}}\) lower bounds.
6. RELATION OF QBF FREGE TO SEQUENT SYSTEMS AND BOUNDED ARITHMETIC

Having defined and analysed the new QBF Frege systems it is natural to ask how they compare to classic sequent calculi—which have a long history for QBF [Cook and Morioka 2005; Dowd 1985; Egly 2012; Krajíček and Pudlák 1990]—and first-order theories of bounded arithmetic. After reviewing the necessary prerequisites we approach both of these questions in this section.

6.1. Background on sequent systems and bounded arithmetic

6.1.1. Sequent Calculi. Gentzen’s sequent calculus [Gentzen 1935] is a classical proof system, both for first-order and propositional logic, cf. [Krajíček 1995]. The propositional sequent calculus LK operates with sequents $\Gamma \rightarrow \Delta$ with the semantic meaning $\bigwedge_{\varphi \in \Gamma} \varphi \models \bigvee_{\psi \in \Delta} \psi$.

An important rule in LK is the cut rule

$$\frac{\Gamma \rightarrow \Delta, A \quad A, \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta}$$

\[\text{(cut rule)}\]

allowing only the system Notably, (for Cook and Morioka’s definition) Jerábek and Nguyen [2011] showed that we will, however, use the redefinition of these systems by Cook and Morioka [2005].

\[\varphi(x/\psi), \Gamma \rightarrow \Delta \] \[\forall x \varphi, \Gamma \rightarrow \Delta \quad (\forall\text{-l}) \]

\[\Gamma \rightarrow \Delta, \varphi(x/p) \] \[\Gamma \rightarrow \Delta, \forall x \varphi \quad (\forall\text{-r}) \]

and \(\exists\text{-introduction} \)

\[\varphi(x/p), \Gamma \rightarrow \Delta \] \[\exists x \varphi, \Gamma \rightarrow \Delta \quad (\exists\text{-l}) \]

\[\Gamma \rightarrow \Delta, \varphi(x/\psi) \] \[\Gamma \rightarrow \Delta, \exists x \varphi \quad (\exists\text{-r}). \]

For the rules \(\forall\text{-l} \) and \(\exists\text{-r} \), \(\varphi(x/\psi) \) is the result of substituting \(\psi \) for all free occurrences of \(x \) in \(\varphi \). The formula \(\psi \) may be any quantifier-free formula (i.e., without bounded variables) that is free for substitution for \(x \) in \(\varphi \) (i.e., no free occurrence of \(x \) in \(\varphi \) is within the scope of a quantifier \(Qy \) such that \(y \) occurs in \(\psi \)). The variable \(p \) in the rules \(\forall\text{-r} \) and \(\exists\text{-r} \) must not occur free in the bottom sequent.

For \(i \geq 0 \), \(G_i \) is a subsystem of \(G \) with cuts restricted to prenex \(\Sigma^i_q \cup \Pi^i_q \)-formulas. On propositional formulas \(G_0 \) is p-equivalent to Frege and \(G_1 \) is p-equivalent to \(EF \), cf. [Krajíček 1995]. The systems \(G \) and \(G_i \) were originally introduced slightly differently, cf. [Krajíček and Takeuti 1992; Krajíček 1995; Krajíček and Pudlák 1990], not restricting the formulas \(\psi \) in \(\forall\text{-l} \) and \(\exists\text{-r} \) to be quantifier-free, and defining \(G_i \) as the system \(G \) allowing only \(\Sigma^i_q \)-formulas in sequents. Hence, \(G_i \)'s could not prove all true \(\text{QBFs} \). We will, however, use the redefinition of these systems by Cook and Morioka [2005]. Notably, (for Cook and Morioka’s definition) Jerábek and Nguyen [2011] showed that the system \(G \), with cuts restricted to prenex \(\Sigma^i_q \)-formulas is p-equivalent to \(G_i \), with cuts restricted to prenex \(\Pi^i_q \)-formulas and p-equivalent to \(G \), with cuts restricted to (not necessarily prenex) \(\Sigma^i_q \cup \Pi^i_q \)-formulas. Moreover these equivalences hold as well for the tree-like versions of these systems. Cook and Morioka [2005] also proved that their definition of \(G_i \), is p-equivalent to \(G \), from [Krajíček and Pudlák 1990] for \(i \geq 0 \) and prenex \(\Sigma^i_q \cup \Pi^i_q \)-formulas (so by Jerábek and Nguyen [2011] also for non-prenex ones). Finally, the systems \(G \) and tree-like \(G_i \) have quite constructive \text{witnessing properties}. Whenever there are polynomial-size tree-like \(G_i \) proofs of formulas \[\exists y \bigwedge_{s,t} \varphi^{s,t}(x,y) \] for \(A_n(x,y) \subseteq \Sigma^i_q \), there exist polynomial-size circuits \(C_n \) witnessing the existential quantifiers, i.e., the formula \[A_n(x,C_n(x)) \] holds, cf. [Cook and Morioka 2005, Theorem 7]. In case of \(G_0 \) the circuits witnessing \(\Sigma^i_q \)-formulas are from \(\text{NC}^1 \), cf. [Cook and Morioka 2005, Theorem 9]. The witnessing theorems can be generalized to systems tree-like \(G_i \) and \(G \), for \(i \geq 1 \) w.r.t. \(\Sigma^i_q \)-formulas and witnessing functions corresponding to higher levels of the polynomial hierarchy.

6.1.2. Bounded arithmetic. In first-order logic it is customary to consider the language \[L = \{ 0, S, +, \leq, [\frac{x}{2}], |x|, \# \} \] where the function \[|x| \] is intended to mean ‘the length of the binary representation of \(x \)’ and \(x\#y = 2^{|x|+|y|} \).

A quantifier is \textit{bounded} if it has the form \(\exists x, x \leq t \) or \(\forall x, x \leq t \) for \(x \) not occurring in the term \(t \). A bounded quantifier is \textit{sharply bounded} if \(t \) has the form \(|s| \) for some term \(s \). By \(\Sigma^i_q (= \Pi^i_q = \Delta^i_q) \) we denote the set of all formulas in the language \(L \) with all quantifiers sharply bounded. For \(i \geq 0 \), the sets \(\Sigma^i_q \) and \(\Pi^i_q \) are defined inductively. \(\Sigma^i_{q+1} \) is the closure of \(\Pi^i_q \) under bounded existential and sharply bounded quantifiers,
and Π_{i+1}^b is the closure of Σ_i^b under bounded universal and sharply bounded quantifiers. That is, the complexity of bounded formulas in the language L (formulas with all quantifiers bounded) is defined by counting the number of alternations of bounded quantifiers, ignoring the sharply bounded ones. For $i > 0$, Δ_i^b denotes $\Sigma_i^b \cap \Pi_i^b$.

Bounded formulas capture the polynomial hierarchy: for any $i > 0$ the i-th level Σ_i^p of the polynomial hierarchy coincides with the sets of natural numbers definable by Σ_i^b-formulas. Dually for Π_i and Π_i^b.

Buss [Buss 1986a] introduced theories of bounded arithmetic S^b_i, T^b_i for $i \geq 1$ in the language L. The axioms of S^b_i consist of a set of basic axioms defining properties of symbols from L, cf. [Krajíček 1995], and length induction Σ^b_i-LIND, which is the following scheme for Σ^b_i-formulas A (or equivalently, for $A \in \Pi_i^b$, in which case we speak of Π_i^b-LIND):

$$A(0) \land \forall x \left(A(x) \rightarrow A(x+1) \right) \rightarrow \forall x A(x).$$

Theories T^b_i are defined similarly, but here the induction scheme is

$$A(0) \land \forall x \left(A(x) \rightarrow A(x+1) \right) \rightarrow \forall x A(x)$$

for $A \in \Sigma^b_i$.

By $\text{FP}^{\Sigma^b_i}[O(\log n)]$ we denote the set of functions computed by a polynomial-time Turing machine making at most $O(\log n)$ queries to a Σ^b_i-oracle. $\text{FP}^{\Sigma^b_i}$ is defined analogously but without the restriction on the number of queries. T^b_2 proves the totality of functions $\text{FP}^{\Sigma^b_i}$ computable in polynomial time under a Σ^b_i oracle, cf. [Krajíček 1995, Theorem 6.1.2]. More precisely, for any $f \in \text{FP}^{\Sigma^b_i}$ there is a Σ^b_{i+1}-formula $f(x) = y$ such that $T^b_2 \vdash \forall x \exists y f(x) = y$. In the same way, S^b_2 proves the totality of functions in $\text{FP}^{\Sigma^b_i}[O(\log n)]$, which are computed in polynomial time with at most $O(\log n)$ queries to a Σ^b_i-oracle, cf. [Krajíček 1995, Theorem 6.2.2]. By Parikh’s theorem, $T^b_2 \vdash \exists \gamma \left(\gamma \leq p(|x|) \land f(x) = y \right)$ implies $T^b_2 \vdash \exists \gamma \left(\gamma \leq p(|x|) \land f(x) = y \right)$ for some polynomial p, and the same is true for S^b_2, cf. [Buss 1986a; Parikh 1971].

S^b_2 can be seen as a first-order non-uniform version of tree-like G_i, $i \geq 1$. Firstly, for $j \geq 1$ any Σ^b_j-formula $\varphi(x)$ can be translated into a sequence $\|\varphi(x)\|^n$ of Σ^b_i-formulas, where n denotes the size of the input x in binary (cf. [Krajíček 1995, Definition 9.2.1]). Then, for $i,j \geq 1$ whenever $S^b_2 \vdash A$ for $A \in \Sigma^b_i$, there is a polynomial p such that formulas $\|A\|^n$ have tree-like G_i-proofs of size $p(n)$. This also holds for T^b_2 in place of S^b_2 if tree-like G_i is replaced by G_i. The ability to use arbitrary j is due to Cook and Morioka [2005, Theorem 3] who generalized a standard result, cf. [Krajíček 1995, Theorem 9.2.6], which worked for $j = i$.

If $A \in \Pi^b_i$, we abuse notation and also denote by $\|A\|^n$ the propositional formulas obtained as in $\|A\|^n$, but leaving the universally quantified variables free. $S^b_2 \vdash A$ for $A \in \Pi^b_i$ implies that S^b_2 proves the existence of polynomial-size tree-like G_1-proofs of propositional formulas $\|A\|^n$, cf. [Krajíček 1995, Theorems 9.2.6 and 9.2.7].

6.2. Intuitionistic logic corresponds to extended Frege for QBFs

The main information on strong propositional and QBF systems stems from their correspondence to first-order theories of bounded arithmetic, cf. [Beyersdorff 2009; Cook and Nguyen 2010; Krajíček 1995]. In this sense, tree-like G_1 corresponds to S^b_2 and G_1 to T^b_2 as explained above. Here we will establish such a correspondence between first-order intuitionistic logic and $\text{EF} + \forall \text{red}$.

Buss [1986b] developed an intuitionistic version of S^b_2, denoted IS^b_2, and showed that for any formula A, $\text{IS}^b_2 \vdash \exists y A(x,y)$ implies the existence of a polynomial-time function.
disjunction is a priori not allowed in intuitionistic logic. It implies the existence of an efficient interpolating circuit, but moving the universal quantifiers inside the disjunction is a priori not allowed in intuitionistic logic.

First, we recall the definition of IS\textsubscript{1}2 by Cook and Urquhart [1993]. It is equivalent to Buss’ original definition, cf. [Buss 1986b]. IS\textsubscript{1}2 is a theory in the language L (like S\textsubscript{2}2), with underlying intuitionistic predicate logic, a set of basic axioms defining properties of symbols from L, and a polynomial induction scheme for Σ\textsubscript{1}0+-formulas A:

\[A(0) \land \forall x \left(\left[\frac{x}{2} \right] \rightarrow A(x) \right) \rightarrow \forall x A(x), \]

where Σ\textsubscript{1}0+-formulas are Σ\textsubscript{1}0-formulas without negation and implication connectives. S\textsubscript{1}2 is Σ\textsubscript{1}0-conservative over IS\textsubscript{1}2, cf. [Cook and Urquhart 1993, Corollary 1.7]. That is, any Σ\textsubscript{1}0 formula provable in S\textsubscript{1}2 is provable already in IS\textsubscript{1}2.

We will also use Cook and Urquhart’s conservative extension of IS\textsubscript{1}2 denoted IPV, cf. [Cook and Urquhart 1993, Chapter 4 and Theorem 4.12]. IPV is defined by adding intuitionistic predicate logic to Cook’s theory PV, cf. [Cook 1975]. The language of IPV consist of symbols for all polynomial-time functions. The hierarchy of formulas \(\Pi^i_1(PV) \) is defined analogously as \(\Pi^i_1 \) but in the language of IPV. Also, propositional translations \(\|A\|_n \) for \(\Pi^i_1(PV) \)-formulas A are defined analogously as in the case of \(A \in \Pi^i_1 \). Consequently, IPV \(\vdash A \) for \(A \in \Pi^i_1(PV) \) implies that propositional formulas \(\|A\|_n \) have polynomial-size EF proofs, cf. [Krajíček 1995, Theorem 9.2.7].

Cook and Urquhart [1993, Corollary 8.18] generalized Buss’ witnessing theorem: whenever IPV \(\vdash \forall x \exists y A(x, y) \) for an arbitrarily complex formula A, then there is a polynomial-time function f (with an IPV function symbol f) such that IPV \(\vdash \forall x A(x, f(x)) \).

We are now ready to derive the correspondence between IS\textsubscript{1}2 and EF + ∀red. The correspondence consists of two parts (cf. [Beyersdorff 2009]). For the first part we translate first-order formulas \(\varphi \) into sequences of QBFs [Krajíček and Pudlák 1990] and show that translations of provable IS\textsubscript{1}2 formulas have short EF + ∀red proofs.

Theorem 6.1. If IS\textsubscript{1}2 proves a statement T in prenex form, then there exist polynomial-size EF + ∀red refutations of \(\|\neg T\|_n \) where \(n \) denotes the size of the input variables in binary.

Proof. By Cook and Urquhart’s improvements of Buss’ witnessing theorem, if IS\textsubscript{1}2 proves T of the form

\[\forall x_1 \exists y_1 \cdots \forall x_n \exists y_n T'(x_1, \ldots, x_n, y_1, \ldots, y_n) \]

for \(T' \in \Sigma^0_0 \), there is an IPV-function \(f_1(x_1) \) such that

\[\text{IPV} \vdash \forall x_1 \forall x_2 \exists y_2 \cdots \forall x_n \exists y_n T'(x_1, \ldots, x_n, f_1(x_1), y_2, \ldots, y_n). \]

Iterating this argument all existential quantifiers of T can be witnessed provably in IPV by polynomial-time functions \(f_1, \ldots, f_n \). Therefore, IPV proves the \(\Pi^i_1(PV) \) formula

\[\varphi = \bigwedge_{i=1}^{n} (y_i \leftrightarrow f_i(x_1, \ldots, x_i)) \rightarrow T'(x_1, \ldots, x_n, y_1, \ldots, y_n) \]

(23)

It could be tempting to expect that an adequate counterpart to IS\textsubscript{1}2 would be intuitionistic propositional logic. However, intuitionistic propositional logic admits the feasible interpolation property, cf. [Buss and Mints 1999], while IS\textsubscript{1}2 can (constructively) prove \(\forall x, z \left[A(x, y) \lor B(x, z) \right] \), in principle, without the existence of an efficient interpolant. It is also known, cf. [Ghasemloo and Pich 2013], that IS\textsubscript{1}2 \(\vdash \forall y A(x, y) \lor \forall z B(x, z) \) implies the existence of an efficient interpolating circuit, but moving the universal quantifiers inside the disjunction is a priori not allowed in intuitionistic logic.
and the formulas $\|\varphi\|^n$ have polynomial-size EF proofs. EF+\forallref can now refute $\|\neg T\|^n$ in polynomial size by deriving $\bigvee_i (y_i \neq f_i(x_1, \ldots, x_i))$ and cutting all the disjuncts as in the proof of Theorem 4.5.

The second part of the correspondence consists in proving the soundness of the proof systems in the first-order theory. For this we need to express the correctness of EF+\forallref by QBFs. This is typically done by the reflection principle of a proof system P, stating that whenever φ has a P-proof (resp. a P-refutation), then φ is true (resp. false).

Here, the Formalized Strategy Extraction Theorem allows us to express the reflection principle of EF+\forallref by a Π^0_2-formula $\text{REF}(\text{EF}+\forall\text{red})$. More precisely, we define $\text{REF}(\text{EF}+\forall\text{red})$ as the Π^0_2-formula expressing that if π is a proof of a QBF, then circuits $C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})$ obtained as in the Strategy Extraction Theorem witness the existential quantifiers in the QBF as in the statement of Theorem 6.2 below.

To show this reflection principle in S^1_2, we return again to the Strategy Extraction Theorem and provide a different formalization than in Theorem 4.4, this time in the theory S^2_2.

THEOREM 6.2 (FORMALIZED STRATEGY EXTRACTION). There is a linear-time algorithm A such that S^1_2 proves the following. Assume that π is an EF+\forallrefutation of a QBF ψ of the form

$$\exists x_1 \forall y_1 \cdots \exists x_n \forall y_n \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$

where $\varphi \in \Sigma^0_n$. Then $A(\pi)$ outputs n circuits $C_1(x_1), \ldots, C_n(x_1, \ldots, x_n, y_1, \ldots, y_{n-1})$ defining a winning strategy for the universal player on formula ψ; that is,

$$\forall x_1 \cdots \forall x_n \forall y_1 \cdots \forall y_n \left[\bigwedge_{i=1}^n (y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})) \rightarrow \neg \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n) \right].$$

PROOF. It is just sufficient to inspect the proof of the Strategy Extraction Theorem from Section 4, and point out that it essentially uses a Π^0_2-induction on the number of steps in the proof π, that is Π^0_2-LINQ available in S^1_2. For convenience of the reader we recap here what was the approach. Let $\pi = (L_1, \ldots, L_s)$ be an EF+\forallrefutation of the QBF ψ given as in Theorem 6.2 and put

$$\pi_0 = \psi, \quad \pi_i = \psi \land L_1 \land \cdots \land L_i \text{ for } i > 0.$$

We show by downward induction on i, that from π_i it is possible to construct in linear time a winning strategy

$$\sigma^i = \{C_1^i(x_1), \ldots, C_n^i(x_1, \ldots, x_n, y_1, \ldots, y_{n-1})\}$$

for the universal player for the QBF ψ_i. The statement of the Formalized Strategy Extraction Theorem corresponds to the case $i = 0$.

In the base case, ψ_0 contains a contradiction and the winning strategy can be defined as the set of trivial circuits $\{0, \ldots, 0\}$. Assume now that σ^i is a winning strategy for ψ_i. If L_i is derived by an EF rule, then we set $\sigma^{i-1} = \sigma^i$. Assume now that $L_i = L_j[u/B]$ is the result of an application of a \forallref rule on L_j, where u is the rightmost variable in L_j. We define $C^i_{\neg L} = C^i_j$ if $u \neq y_i$, otherwise we set

$$C^i_{\neg L}(z) = \begin{cases} B(z) & \text{if } L_j[u/B](z) = 0 \\ C^i_j(z) & \text{if } L_j[u/B](z) = 1. \end{cases}$$

This constructs circuits C_i^j from π_i by a standard $O(|\pi_i|)$-time algorithm. To show that the strategies σ^i are winning for any $0 \leq i \leq |\pi|$, we need to analyse the inductive step.

Assume that σ^i is the winning strategy for the universal player on $Q \varphi_i$. If L_i is derived by an EF rule, the winning strategy for $Q \varphi_i$ works also for $Q \varphi_{i-1}$ because a falsification of L_i by a given assignment implies a falsification of one of its predecessors. If L_i is the result of an application of $\forall\text{red}$, $C_i^{1-1}(z)$ is redefined only if $L_j[u/B](z) = 0$. For z such that $L_j[u/B](z) = 1$, the strategy σ^i has to work also for $Q \varphi_{i-1}$. Therefore, σ^{i-1} is a winning strategy for the universal player on $Q \varphi_{i-1}$.

An NP predicate is a set of binary strings accepted by a non-deterministic polynomial-time machine, and similarly for coNP predicates. The statement that a strategy σ is winning for the universal player on $Q \psi$ is a coNP predicate (given π) expressible as a well-behaved Π_1^1-formula. The induction we used is on the number of steps in π. Hence, the presented proof is an S_2^1-proof. □

This implies the second part of the correspondence of IS_2^1 to EF + $\forall\text{red}$.

Corollary 6.3. IS_2^1 proves $\text{Ref}(EF + \forall\text{red})$.

Proof. The claim follows from Theorem 6.2 together with the Σ_0^0-conservativity of S_2^1 over IS_2^1 [Cook and Urquhart 1993]. □

Corollary 6.3 implies that EF + $\forall\text{red}$ is the weakest proof system that allows short proofs of all IS_2^1 theorems, i.e., whenever Theorem 6.1 holds for a ‘decent’ proof system P in place of EF + $\forall\text{red}$, then P p-simulates EF + $\forall\text{red}$ on QBFs: If Theorem 6.1 holds for a proof system P, then by Corollary 6.3, there are polynomial-size P-proofs of $|\text{Ref}(EF + \forall\text{red})|^n$. Hence, if π is an EF + $\forall\text{red}$ proof of a QBF ψ, then P has $|\pi|^{O(1)}$-size proofs of ψ with the existential quantifiers witnessed by some circuits. By P being decent we mean that P can introduce efficiently the existential quantifiers in place of the witnessing circuits and this way prove ψ efficiently in the size of π. That is, P is decent if it can derive ψ efficiently in the length of the shortest derivation of ψ witnessed by some circuits.

On the other hand, EF + $\forall\text{red}$ is intuitively the strongest proof system for which IS_2^1 proves the reflection principle. Technically, this only holds for proof systems that admit the Strategy Extraction Theorem as for other systems we would need to define the reflection principle as a more complex statement. (Nevertheless, IS_2^1 provability of the reflection principle for Σ_k^1-formulas for any fixed k implies strategy extraction for the given proof system.)

6.3. Gentzen and Frege for QBFs

We now compare the classic Gentzen systems with our new Frege systems. The two formalisms are well known to be equivalent in the classical propositional case [Krajíček 1995]. By applying the formalized Strategy Extraction Theorem, we show that Gentzen systems simulate Frege systems in the QBF context (cf. Figure 1 in Section 1.1). However, the opposite simulations (Gentzen by Frege) are very likely false as we show by a number of conditional separations.

Theorem 6.4. Tree-like G_1 p-simulates EF + $\forall\text{red}$.

Proof. By Theorem 4.5, any EF + $\forall\text{red}$ refutation π of a QBF ψ of the form

$$\exists x_1 \forall y_1 \cdots \exists x_n \forall y_n \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$

...
where \(\varphi \in \Sigma_0^n \) can be transformed in time \(|\pi|^O(1)\) into an EF proof of
\[
\bigwedge_{i=1}^{n} (y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})) \rightarrow \neg \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n)
\]
for certain circuits \(C_i \). We want to derive \(\neg \psi \) in tree-like \(G_1 \). Since we do not distinguish between a refutation of \(\psi \) and provability of \(\neg \psi \), this will prove the theorem.

Claim 6.5. There is a \(|\pi|^O(1)\)-size tree-like \(G_1 \) proof of the following sequent
\[
\{ y_i = C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1}) \}_{i=1}^{n} \rightarrow \neg \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n)
\]
where the encoding of circuits \(C_i \) might use some auxiliary variables.

Proof of Claim. To see that the claim holds note first that by the p-equivalence of EF and tree-like \(G_1 \) (cf. [Krajíček 1995]), the EF proof obtained above can be turned into a \(|\pi|^O(1)\)-size tree-like \(G_1 \)-proof of the formula
\[
\neg \left(\bigwedge_{i=1}^{n} y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1}) \right) \lor \neg \varphi.
\]
This proof can be easily modified so that the \(\lor \) connective is not introduced, leading to a \(|\pi|^O(1)\)-size tree-like \(G_1 \)-proof of the sequent
\[
\neg \left(\bigwedge_{i=1}^{n} y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1}) \right), \neg \varphi.
\]
Moving \(\neg (\bigwedge_{i=1}^{n} y_i = C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})) \) from the succedent to the antecedent we obtain
\[
\bigwedge_{i=1}^{n} (y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})) \rightarrow \neg \varphi.
\]
Finally, tree-like \(G_1 \) derives the sequent we want by ‘not introducing’ \(\land \) in the antecedent. This proves the claim.

Moving \(\neg \varphi \) to the succedent, applying \(\lor \)-l and \(\exists \)-l introductions, tree-like \(G_1 \) then derives
\[
\forall y_n \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n), \Gamma, \exists y_n (y_n \leftrightarrow C_n(x_1, \ldots, x_n, y_1, \ldots, y_{n-1})) \rightarrow
\]
where \(\Gamma = \{ y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1}) \}_{i=1}^{n-1} \).

As tree-like \(G_1 \) proves efficiently \(\rightarrow \exists y (y \leftrightarrow C(x)) \) for any circuit \(C \), we can cut the formula \(\exists y_n (y_n \leftrightarrow C_n(x_1, \ldots, x_n, y_1, \ldots, y_{n-1})) \) out of the antecedent and derive
\[
\forall y_n \varphi, \{ y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1}) \}_{i=1}^{n-1} \rightarrow
\]
Now, we use \(\exists \)-l introduction to obtain
\[
\exists x_n \forall y_n \varphi, \{ y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1}) \}_{i=1}^{n-1} \rightarrow
\]
In this way we can gradually cut out all remaining formulas from the antecedent, quantify all variables, move \(\psi \) to the succedent and derive \(\neg \psi \) in tree-like \(G_1 \) by a proof of size \(|\pi|^O(1)\). \(\square \)

To introduce the quantifier prefix of \(\psi \) in the previous proof we needed to cut \(\Sigma_1^n \)-formulas. We would like to use a similar proof to simulate Frege + \(\forall \)red by tree-like \(G_0 \). However, tree-like \(G_0 \) is allowed to cut only \(\Sigma_0^n \)-formulas. Therefore, we obtain just a simulation of Frege + \(\forall \)red by tree-like \(G_0 \) where the proven sequent in tree-like \(G_0 \) contains a non-empty (easily derivable) antecedent.
THEOREM 6.6. There is a polynomial-time function t such that given any Frege + ∀red refutation of a QBF ψ of the form

$$\exists x_1 \forall y_1 \ldots \exists x_n \forall y_n \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$

where $\varphi \in \Sigma^q_0$, $t(\pi)$ is a tree-like G_0 proof of the sequent

$$\forall x_1 \exists y_1 \ldots \forall x_n \exists y_n \bigwedge_{i=1}^{n} y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1}) \rightarrow \neg \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$

for some formulas C_i. Note that the antecedent has a tree-like G_0 proof of size $|\pi|^{O(1)}$.

PROOF. By Theorem 4.5, any Frege + ∀red refutation π of a QBF ψ can be transformed in time $|\pi|^{O(1)}$ into a Frege proof of

$$\bigwedge_{i=1}^{n} (y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1})) \rightarrow \neg \varphi(x_1, \ldots, x_n, y_1, \ldots, y_n)$$

for certain formulas C_i. Analogously as in the proof of Theorem 6.4, we efficiently obtain a $|\pi|^{O(1)}$-size tree-like G_0 proof of

$$\bigwedge_{i=1}^{n} y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1}) \rightarrow \neg \varphi.$$

Applying rules ∀-l, ∃-l, ∀-l (in this order) we derive

$$\exists x_n \forall y_n \varphi, \forall x_n \exists y_n \bigwedge_{i=1}^{n} y_i \leftrightarrow C_i(x_1, \ldots, x_i, y_1, \ldots, y_{i-1}) \rightarrow \psi.$$

In this way we efficiently introduce all quantifiers, then move ψ to the succendent, and derive the required sequent in tree-like G_0. □

We now prove some conditional separations between Gentzen and Frege systems for QBF. As we saw in Section 5.3, improving these separations to unconditional results tightly corresponds to major open problems in circuit complexity and proof complexity.

6.3.1. Formulas hard in Gentzen, but easy in Frege. We first give formulas (conditionally) hard for G_0, but easy for $EF + ∀red$.

THEOREM 6.7. If $P/poly \neq NC^1$ then there are Σ^q_0-formulas with polynomial-size $EF + ∀red$ proofs but without polynomial-size G_0 proofs.

PROOF. Let f be a function in $P/poly$. Then $EF + ∀red$ has simple polynomial-size proofs of Σ^q_0 formulas $\exists y \exists z \varphi(x) = y$ expressing the totality of f with auxiliary variables z representing nodes of a polynomial-size circuit computing f. The $EF + ∀red$ proof refutes the propositional formula $f(x) \neq y$ by gradually replacing each variable from z, y by the circuit it represents. If the totality of f has polynomial-size G_0 proofs, by the Σ^q_0 witnessing property, cf. [Cook and Morioka 2005, Theorem 9], f is in NC^1. □

Notably, in Section 4.2 we showed that Frege + ∀red and $EF + ∀red$ are p-equivalent to their tree-like versions. This is open for G_0 and G_1, thus providing some further evidence for the incomparability of Gentzen and Frege in QBF.

6.3.2. Formulas easy in Gentzen, but hard in Frege. We now provide three different properties that are easy for QBF Gentzen systems, but hard for $EF + ∀red$. Our first conditional result shows that there are Σ^q_1-formulas with polynomial-size tree-like G_1 proofs but no polynomial-size $EF + ∀red$ proofs, and this result generalizes to stronger systems.
Theorem 6.8. Let \(i \geq 1 \). Assume \(f \in \text{FP}^{\Sigma_i^p} \) is hard for \(\text{P/} \text{poly} \). Then the formulas
\[
\| \exists y (|y| \leq p(|x|) \land f(x) = y) \|^n,
\]
where \(p \) is a polynomial and \(f(x) = y \) is expressed by a \(\Sigma_{i+1}^p \)-formula, have polynomial-size \(G_i \) proofs and require super-polynomial-size \(\text{EF} + \forall \text{red} \) proofs. If \(f \in \text{FP}^{\Sigma_1^p}(O(\log n)) \) then \(G_i \) can be replaced by tree-like \(G_i \).

Proof. Since \(T_2 \) proves the totality of \(\text{FP}^{\Sigma_p} \) functions [Buss 1986a], it proves the totality of \(f \) and the proof can be transformed into a sequence of polynomial-size \(G_i \) proofs [Cook and Morioka 2005; Krajícek and Pudlák 1990]. If the totality of \(f \) can be shown by polynomial-size proofs in \(\text{EF} + \forall \text{red} \), then, by the Strategy Extraction Theorem, \(f \) is in \(\text{P/} \text{poly} \).

Similarly, \(S_2 \) proves the totality of \(\text{FP}^{\Sigma_p}(O(\log n)) \) functions and such proofs translate into sequences of polynomial-size tree-like \(G_i \) proofs [Buss 1986a; Cook and Morioka 2005; Krajícek and Pudlák 1990].

It seems that the separation above of tree-like \(G_i \) and \(\text{EF} + \forall \text{red} \) by \(\Sigma_2^p \)-formulas cannot be improved to \(\Sigma_3^p \)-formulas as it is tight in the following sense. If we had \(\Sigma_2^p \)-formulas \(\exists y A_n(x, y) \) with polynomial-size tree-like \(G_i \) proofs but without polynomial-size \(\text{EF} + \forall \text{red} \) proofs, this would imply that \(\text{EF} \) is not polynomially bounded: by the witnessing theorem for tree-like \(G_i \), cf. [Cook and Morioka 2005, Theorem 7], there would be polynomial-size circuits \(C_n \) such that formulas \(A_n(x, C_n(x)) \) are true, and so \(\neg A_n(x, C_n(x)) \) would be hard to refute in \(\text{EF} \).

The QBF proof systems tree-like \(G_i \) and \(\text{EF} + \forall \text{red} \) can be conditionally separated also on the bounded collection scheme.

Definition 6.9. The bounded collection scheme \(\text{BB}(\varphi) \) is the formula
\[
\exists i < |a| \exists w < t(a) \forall u < a \forall j < |a| \ (\varphi(i, u) \rightarrow \varphi(j, [w]_j))
\]
where \(\varphi(i, u) \) is a formula which can have other free variables, \([w]_j \) is the \(j \)-th element of the sequence coded by \(w \), and \(t(a) \) is a concrete \(L \)-term depending on the choice of the encoding of sequences.

Roughly, \(\text{BB}(\varphi) \) says that \(u \)'s witnessing \(\varphi(i, u) \) can be collected in a sequence \(w \):
\[
\forall i < |a| \exists u < a, \varphi(i, u) \rightarrow \exists w < t(a) \forall j < |a|, \varphi(j, [w]_j).
\]

Theorem 6.10. The QBF proof system tree-like \(G_1 \) has polynomial-size proofs of \(\| \text{BB}(\varphi) \|^n \) for all \(\varphi \in \Sigma_2^p \). In contrast, there exists \(\varphi \in \Sigma_2^p \) such that formulas \(\| \text{BB}(\varphi) \|^n \) are hard for \(\text{EF} + \forall \text{red} \) unless each polynomial-time permutation with \(n \) inputs can be inverted by polynomial-size circuits with probability at least \(1 - 1/n \).

Proof. The upper bound follows from the \(\text{S}_2^p \)-provability of \(\text{BB}(\varphi) \) for \(\varphi \in \Sigma_2^p \), cf. [Buss 1986a, Theorem 14], and its transformation to tree-like \(G_i \) proofs [Cook and Morioka 2005; Krajícek and Pudlák 1990]. For the lower bound we will use a result by Cook and Thapen [2006] showing that Cook’s theory \(PV \) does not prove \(\text{BB}(\varphi) \) for all \(\varphi \in \Sigma_2^p \) unless factoring is in probabilistic polynomial time.

Let \(a = 2^n \) and \(\varphi(i, u) \) be the formula \(f(u) = [y] \), for a polynomial-time permutation \(f \) (defined by a \(\Sigma_2^p \) formula), and \(y \) encoding a sequence of \(n \) strings of length \(n \).

Assume that \(\text{EF} + \forall \text{red} \) has polynomial-size proofs of \(\| \text{BB}(\varphi) \|^n \). By the Strategy Extraction Theorem there are polynomial-size circuits \(B, C \) such that
\[
\exists u < 2^n, f(u) = [y]_{C(y)} \rightarrow \forall j < n, f([B(y)]_j) = [y]_j.
\]
(24)

To invert \(f \) we proceed as follows. Given \(z \in \{0, 1\}^n \), pick randomly \(n \) strings \(s_i \in \{0, 1\}^n \) and let \(i_0 \) be a position (a non-uniform advice) such that \(\Pr_{y}(C(y) = i_0) \leq 1/n \) where \(y \)'s are sequences of \(n \) strings of length \(n \). Define \(y_{z,s} \) to be the sequence
of elements $z,f(s_1),\ldots,f(s_{n-1})$ ordered so that $[y_{z,s}]_{i_0} = z$ and let $x_{z,s}$ be the sequence of z,s_1,\ldots,s_{n-1} ordered so that $f([x_{z,s}]) = [y_{z,s}]_i$ for $i \neq i_0$. For random strings z,s_1,\ldots,s_{n-1} we have that $y_{z,s}$ is a random sequence of n strings of length n and $\Pr_{z,s_1,\ldots,s_{n-1}}[C(y_{z,s}) = i_0] \leq 1/n$. Consequently, with probability at least $1 - 1/n$, $f([x_{z,s}]_{C(y_{z,s})}) = [y_{z,s}]_{C(y_{z,s})}$ holds and by (24) the inverse of f on z is $|B(y_{z,s})|_{i_0}$.

While the previous two results exhibited formulas easy for tree-like G_1 and hard for $EF + \forall \text{red}$, we now show that even tree-like G_0 can prove Σ^0_2-formulas hard for $EF + \forall \text{red}$ (modulo a hardness assumption).

For this we use a result by Bonet et al. [2000], who showed that Frege systems do not admit the so-called feasible interpolation property unless factoring of Blum integers is solvable by polynomial-size circuits. (A Blum integer is the product of two distinct primes, which are both congruent 3 modulo 4.)

It is possible to separate tree-like G_0 and $EF + \forall \text{red}$ even under the assumption $NP \not\subseteq P/\text{poly}$. The separating Σ^0_2-formulas are of the form

$$\forall x \exists y \forall z (\text{SAT}(x,y) \lor \neg\text{SAT}(x,z))$$

and state that each propositional formula is either satisfiable or unsatisfiable. These formulas have polynomial-size tree-like G_0 proofs because their two-sorted formulation is easily provable in the theory known as VNC^1, the two-sorted version of tree-like G_0, cf. [Cook and Morioka 2005]. (In fact, this is already provable in the two-sorted logic without the extra axioms of VNC^1.) On the other hand, if these formulas were easy for $EF + \forall \text{red}$, by strategy extraction, we would get polynomial-size circuits for SAT. As presenting this argument formally would require to introduce two-sorted theories of bounded arithmetic and the corresponding machinery, we prove here only the separation based on the stronger assumption of the hardness of factoring.

THEOREM 6.11. There are Σ^0_2-formulas with polynomial-size tree-like G_0 proofs. However, assuming factoring of Blum integers is not computable by polynomial-size circuits, these formulas require $EF + \forall \text{red}$ proofs of super-polynomial size.

PROOF. Bonet et al. [2000] showed that there are propositional formulas $A_0(x,y)$, $A_1(x,z)$ with common variables x such that $A_0(x,y) \lor A_1(x,z)$ have polynomial-size Frege proofs but, unless factoring of Blum integers is computable by polynomial-size circuits, there are no polynomial-size circuits $C(x)$ recognizing which of $A_0(x,y)$ or $A_1(x,z)$ holds for a given x.

Frege is p-equivalent to tree-like G_0 on propositional formulas [Krajíček 1995] and so it is possible to derive in tree-like G_0 the sequents in Figure 2.

Therefore, the Σ^0_2-formulas

$$\exists b \forall y \forall u ((A_0(x,y) \land \neg b) \lor (A_1(x,u) \land b))$$

have polynomial-size tree-like G_0 proofs.
If these formulas had polynomial-size $\text{EF} + \forall\text{red}$ proofs, then, by the Strategy Extraction Theorem, there would be polynomial-size circuits computing b from x and thus recognizing which of $A_0(x, y)$ and $A_1(x, u)$ holds. \hfill \Box

We remark that the assumptions of Theorems 6.10 and 6.11 are stronger than the assumption of Theorem 6.8. However, while factoring forms a good candidate for a one-way function, it is not known if the existence of one-way functions implies the existence of one-way permutations.

7. CONCLUSION
Our work opens up two lines of research that we believe might have a significant influence on QBF proof complexity and beyond.

Exploring new QBF proof systems. The first of these is the study of natural and powerful QBF proof systems that correspond to ideas developed in propositional proof complexity for many years. While we concentrate here on the hierarchy C-Frege $+ \forall\text{red}$ of new QBF Frege systems, our definitions introduce meaningful versions of algebraic and geometric proof systems for QBF. These systems will be very interesting to study from a theoretical perspective and also might provide an important stimulus on QBF solving—analogous to the potential of integer linear programming and polynomial calculus for SAT solving.

Understanding the transfer from circuit to proof complexity. As far as we know, for the first time in the literature, our lower bound technique via strategy extraction gives a formal and rigorous account on the relation between a circuit class C and proof systems using lines from C. Building on the previous work of Beyersdorff et al. [2015] we establish this relation for a full hierarchy of QBF systems. This yields very strong results in QBF proof complexity. In the recent survey of Buss [2012], the propositional versions of our results C.(i) and (iii) in Section 1.1 are referenced as ‘the main open problems at the “frontier” of Cook’s program’.

We believe that this transfer has the potential to generate lots of further research, both in QBF and indeed for further logics, possibly even including the most important classical propositional case. As for QBFs, the hard formulas Q-f that we generate from a Boolean function f have a special syntactic form, i.e., for all functions we use here they are prefixed by $\exists\forall\exists$. Can we also apply our technique to conceptually different types of QBFs? It is also possible that similar ideas are effective for further logics, possibly modal or intuitionistic logics as they share the same PSPACE complexity, and strong lower bounds are known for Frege systems in these logics as well [Hrubeš 2009; Jeřábek 2009].

ACKNOWLEDGMENTS
The authors are grateful to Nicola Galesi and Albert Atserias for interesting discussions on this work and circuit complexity in general, and to Emil Jeřábek for pointing out the separation of tree-like C_0 and $\text{EF} + \forall\text{red}$ under the weaker assumption $\text{NP} \not\subseteq \text{P}/\text{poly}$.

We also thank the anonymous reviewer for their very careful reading of the manuscript and their detailed and useful comments.

REFERENCES

