Publications
-
Refereed publications
-
- A simple proof of QBF hardness [pdf, 244 kb] de
Olaf Beyersdorff, Joshua Blinkhorn
Inf. Process. Lett. 168: 106093 (2021) - Understanding the Relative Strength of QBF CDCL Solvers and QBF Resolution.
Olaf Beyersdorff, Benjamin Böhm
ITCS 2021: 12:1-12:20 - QBFFam: A Tool for Generating QBF Families from Proof Complexity [pdf, 276 kb] de.
Olaf Beyersdorff, Luca Pulina, Martina Seidl, Ankit Shukla
SAT 2021: 21-29 - Building Strategies into QBF Proofs.
Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan
J. Autom. Reason. 65(1): 125-154 (2021)
- Lower Bounds for QCDCL via Formula Gauge [pdf, 586 kb] de.
Benjamin Böhm, Olaf Beyersdorff
SAT 2021: 47-63 - Hard QBFs for Merge Resolution
Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan, Tomáš Peitl and Gaurav Sood FSTTCS 2020, pages 12:1–12:15 - Frege Systems for Quantified Boolean Logic [pdf, 541 kb] deOlaf Beyersdorff, Ilario Bonacina, Leroy Chew, Ján Pich
Journal of the ACM April 2020 Article No.: 9 - Lower Bound Techniques for QBF Expansion
Olaf Beyersdorff, Joshua Blinkhorn
Theory Comput. Syst. 64(3): 400-421 (2020) - Dynamic QBF Dependencies in Reduction and Expansion
Olaf Beyersdorff, Joshua Blinkhorn
ACM Trans. Comput. Log. 21(2): 8:1-8:27 (2020) - Reasons for Hardness in QBF Proof Systems
Olaf Beyersdorff, Luke Hinde, Ján Pich
TOCT 12(2): 10:1-10:27 (2020) - Hardness Characterisations and Size-Width Lower Bounds for QBF Resolution [pdf, 713 kb] de
Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan
LICS 2020: 209-223 - Olaf Beyersdorff, Joshua Blinkhorn, Tomás Peitl
Strong (D)QBF Dependency Schemes via Tautology-Free Resolution Paths.
SAT 2020: 394-411
- Characterising tree-like Frege proofs for QBF [pdf, 309 kb] de
Olaf Beyersdorff, Luke Hinde
Inf. Comput. 268 (2019) - Reinterpreting Dependency Schemes: Soundness Meets Incompleteness in DQBF
Olaf Beyersdorff, Joshua Blinkhorn, Leroy Chew, Renate A. Schmidt, Martin Suda
Autom. Reasoning 63(3): 597-623 (2019) - A Game Characterisation of Tree-like Q-resolution Size
Olaf Beyersdorff, Leroy Chew, Karteek Sreenivasaiah
J. Comput. Syst. Sci. 104: 82-101 (2019) - Size, Cost, and Capacity: A Semantic Technique for Hard Random QBFs
Olaf Beyersdorff, Joshua Blinkhorn, Luke Hinde
Logical Methods in Computer Science 15(1) (2019) - Short Proofs in QBF Expansion [pdf, 368 kb] de
Olaf Beyersdorff, Leroy Chew, Judith Clymo, Meena Mahajan
SAT2019: 19-35 - Proof Complexity of QBF Symmetry Recomputation [pdf, 277 kb] de
Joshua Blinkhorn, Olaf Beyersdorff
SAT 2019: 36-52 - Building Strategies into QBF Proofs
Olaf Beyersdorff, Joshua Blinkhorn, Meena Mahajan
STACS 2019: 14:1-14:18 - Understanding cutting planes for QBFs
Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil Shukla
Inf. Comput., 262: 141-161, 2018. - Genuine Lower Bounds for QBF Expansion
Olaf Beyersdorff, Joshua Blinkhorn
STACS, pages 12:1-15, 2018. - Relating Size and Width in Variants of Q-Resolution [pdf, 207 kb] de
Judith Clymo, Olaf Beyersdorff
Inf. Process. Lett. (IPL), 138:1-6, 2018. - Size, Cost, and Capacity: A Semantic Technique for Hard Random QBFs
Olaf Beyersdorff, Joshua Blinkhorn, Luke Hinde
ITCS 2018, pages 9:1-18 - Reasons for Hardness in QBF Proof Systems
Olaf Beyersdorff, Luke Hinde, Ján Pich
FSTTCS, pages 14:1-15, 2017. - Shortening QBF Proofs with Dependency Schemes [pdf, 316 kb] de
Joshua Blinkhorn, Olaf Beyersdorff
SAT, pages 263-280, 2017. Best paper award. - Feasible Interpolation for QBF Resolution Calculi
Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil Shukla
Logical Methods in Computer Science, 13(2), 2017. - Understanding Cutting Planes for QBFs [pdf, 628 kb] de
Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil Shukla
FSTTCS, pages 40:1-15, 2016. - Understanding Gentzen and Frege Systems for QBF
Olaf Beyersdorff, Jan Pich
LICS, pages 146-155, 2016. - Dependency Schemes in QBF Calculi: Semantics and Soundness
Olaf Beyersdorff, Joshua Blinkhorn
CP, pages 96-112, 2016. - Lifting QBF Resolution Calculi to DQBF [pdf, 303 kb] de
Olaf Beyersdorff, Leroy Chew, Renate A. Schmidt, Martin Suda
SAT, pages 490-499, 2016. - Are Short Proofs Narrow? QBF Resolution is not Simple [pdf, 444 kb] de
Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil Shukla
STACS, pages 15:1-14, 2016. - Lower bounds: from circuits to QBF proof systems
Olaf Beyersdorff, Ilario Bonacina, Leroy Chew
ITCS, pages 249-260, ACM, 2016. - Extension Variables in QBF Resolution [pdf, 214 kb] de
Olaf Beyersdorff, Leroy Chew, Mikolás Janota
AAAI-16 workshop on Beyond NP, 2016. - Feasible Interpolation for QBF Resolution Calculi
Olaf Beyersdorff, Leroy Chew, Meena Mahajan, Anil Shukla
ICALP, pages 180-192, 2015. - Proof Complexity of Resolution-based QBF Calculi
Olaf Beyersdorff, Leroy Chew, Mikolás Janota
STACS, pages 76-89, 2015. - A Game Characterisation of Tree-like Q-resolution Size
Olaf Beyersdorff, Leroy Chew, Karteek Sreenivasaiah
LATA, pages 486-498, 2015. - On Unification of QBF Resolution-Based Calculi
Olaf Beyersdorff, Leroy Chew, Mikolás Janota
MFCS, pages 81-93, 2014. - Unified Characterisations of Resolution Hardness Measures
Olaf Beyersdorff, Oliver Kullmann
SAT, pages 170-187, 2014. - Tableau vs. Sequent Calculi for Minimal Entailment
Olaf Beyersdorff, Leroy Chew
NMR, 2014. - The Complexity of Theorem Proving in Circumscription and Minimal Entailment
Olaf Beyersdorff, Leroy Chew
IJCAR, pages 403-417, 2014. - The Complexity of Theorem Proving in Autoepistemic Logic
Olaf Beyersdorff
SAT, pages 365-376, 2013. - Parameterized Complexity of DPLL Search Procedures
Olaf Beyersdorff, Nicola Galesi, Massimo Lauria
ACM Trans. Comput. Log. (TOCL), 14(3):20, 2013.
A preliminary version appeared in
SAT, pages 5-18, 2011. (nominated for the best paper award) - A characterization of tree-like Resolution size
Olaf Beyersdorff, Nicola Galesi, Massimo Lauria
Inf. Process. Lett. (IPL), 113(18):666-671, 2013. - Verifying proofs in constant depth
Olaf Beyersdorff, Samir Datta, Andreas Krebs, Meena Mahajan, Gido Scharfenberger-Fabian, Karteek Sreenivasaiah, Michael Thomas, Heribert Vollmer
ACM Transactions on Computation Theory (TOCT), 5(1):2, 2013.
A preliminary version appeared in
MFCS, pages 630-641, 2011. - The complexity of reasoning for fragments of default logic
Olaf Beyersdorff, Arne Meier, Michael Thomas, Heribert Vollmer
J. Log. Comput., 22(3):587-604, 2012.
A preliminary version appeared in
SAT, pages 51-64, 2009. - Parameterized Bounded-Depth Frege Is not Optimal
Olaf Beyersdorff, Nicola Galesi, Massimo Lauria, Alexander A. Razborov
ACM Transactions on Computation Theory (TOCT) , 4(3):7, 2012.
Notable papers
A preliminary version appeared in
ICALP, pages 630-641, 2011. - Proof complexity of propositional default logic
Olaf Beyersdorff, Arne Meier, Sebastian Müller, Michael Thomas, Heribert Vollmer
Arch. Math. Log., 50(7-8):727-742, 2011.
A preliminary version appeared in
SAT, pages 30-43, 2010. - Proof systems that take advice
Olaf Beyersdorff, Johannes Köbler, Sebastian Müller
Inf. Comput. , 209(3):320-332, 2011.
Combined journal version of the conference papers
Olaf Beyersdorff, Sebastian Müller
Does Advice Help to Prove Propositional Tautologies?
SAT, pages 65-72, 2009.
Olaf Beyersdorff, Johannes Köbler, Sebastian Müller
Nondeterministic Instance Complexity and Proof Systems with Advice
LATA, pages 164-175, 2009. - Model Checking CTL is Almost Always Inherently Sequential
Olaf Beyersdorff, Arne Meier, Martin Mundhenk, Thomas Schneider, Michael Thomas, Heribert Vollmer
Logical Methods in Computer Science, 7(2), 2011.
A preliminary version appeared in
TIME, pages 21-28, 2009. - Do there exist complete sets for promise classes? [pdf, 370 kb] de
Olaf Beyersdorff, Zenon Sadowski
Math. Log. Q. (MLQ), 57(6):535-550, 2011.
Combined journal version of the conference papers
Olaf Beyersdorff, Zenon Sadowski
Characterizing the Existence of Optimal Proof Systems and Complete Sets for Promise Classes
CSR, pages 47-58, 2009.
Olaf Beyersdorff
On the Existence of Complete Disjoint NP-Pairs
SYNASC, pages 282-289, 2009. - A tight Karp-Lipton collapse result in bounded arithmetic [pdf, 291 kb] de
Olaf Beyersdorff, Sebastian Müller
ACM Trans. Comput. Log. (TOCL), 11(4), 2010.
A preliminary version appeared in
CSL, pages 199-214, 2008. - A lower bound for the pigeonhole principle in tree-like Resolution by asymmetric Prover-Delayer games
Olaf Beyersdorff, Nicola Galesi, Massimo Lauria
Inf. Process. Lett. (IPL), 110(23):1074-1077, 2010. - The Deduction Theorem for Strong Propositional Proof Systems
Olaf Beyersdorff
Theory Comput. Syst., 47(1):162-178, 2010.
A preliminary version appeared in
FSTTCS, pages 241-252, 2007. - Comparing axiomatizations of free pseudospaces
Olaf Beyersdorff
Arch. Math. Log. (AML), 48(7):625-641, 2009. - Edges as Nodes - a New Approach to Timetable Information
Olaf Beyersdorff, Yevgen Nebesov
ATMOS, 2009. - The complexity of propositional implication
Olaf Beyersdorff, Arne Meier, Michael Thomas, Heribert Vollmer
Inf. Process. Lett. (IPL) , 109(18):1071-1077, 2009. - On the correspondence between arithmetic theories and propositional proof systems - a survey
Olaf Beyersdorff
Math. Log. Q. (MLQ) , 55(2):116-137, 2009.
A preliminary version appeared as
Logical Closure Properties of Propositional Proof Systems
TAMC, pages 318-329, 2008. - Nondeterministic functions and the existence of optimal proof systems
Olaf Beyersdorff, Johannes Köbler, Jochen Messner
Theor. Comput. Sci. (TCS), 410(38-40):3839-3855, 2009. - Tuples of Disjoint NP-Sets
Olaf Beyersdorff
Theory Comput. Syst., 43(2):118-135, 2008.
A preliminary version appeared in
CSR, pages 80-91, 2006. - Classes of representable disjoint NP-pairs
Olaf Beyersdorff
Theor. Comput. Sci. (TCS) , 377(1-3):93-109, 2007.
Combined journal version of the conference papers
Disjoint NP-Pairs from Propositional Proof Systems
TAMC, pages 236-247, 2006.
Representable Disjoint NP-Pairs
FSTTCS, pages 122-134, 2004.
- A simple proof of QBF hardness [pdf, 244 kb] de
-
Invited papers
-
- Dynamic Dependency Awareness for QBF
Joshua Blinkhorn, Olaf Beyersdorff
IJCAI, pages 5224-5228, 2018. - Proof Complexity of Non-classical Logics
Olaf Beyersdorff
TAMC , pages 15-27, 2010. - Different Approaches to Proof Systems
Olaf Beyersdorff, Sebastian Müller
TAMC , pages 50-59, 2010.
- Dynamic Dependency Awareness for QBF
-
Books edited
-
Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International Conference
Olaf Beyersdorff, Christoph M. Wintersteiger (editors),
SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings. Lecture Notes in Computer Science 10929, Springer 2018 -
Book chapters and books
-
- Quantified Boolean formulas [pdf, 638 kb] de
Olaf Beyersdorff, Mikolas Janota, Florian Lonsing, and Martina Seidl In A. Biere, M. Heule, H. van Maaren, and T. Walsh, eds., Handbook of Satisfiability, 2nd edition, Frontiers in Artificial Intelligence and Applications. IOS press, to appear in 2021. - Non-classical Aspects in Proof Complexity [pdf, 784 kb] de
Olaf Beyersdorff
Habilitation Thesis, Leibniz University Hanover, 2011
Cuvillier Verlag, 2012. - Proof Complexity of Non-classical Logics
Olaf Beyersdorff, Oliver Kutz
Lectures on Logic and Computation - ESSLLI 2010 Copenhagen, Denmark, August 2010, ESSLLI 2011, Ljubljana, Slovenia, August 2011, Selected Lecture Notes , pages 1-54, Springer, 2012. - Von der Turingmaschine zum Quantencomputer - ein Gang durch die Geschichte der Komplexitätstheorie [pdf, 848 kb] de
Olaf Beyersdorff, Johannes Köbler
In W. Reisig and J.-C. Freytag, eds., Informatik - Aktuelle Themen im historischen Kontext, pages 165-195, Springer, 2006. - Disjoint NP-pairs and propositional proof systems
Olaf Beyersdorff
Dissertation, Humboldt University Berlin, 2006.
- Quantified Boolean formulas [pdf, 638 kb] de